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Abstract

Audiovisual speech synchrony detection is an important
liveness check for talking face verification systems to make
sure that the (pre-defined) content and timing of the given
audible and visual speech samples match. Nowadays, there
exists virtually no technical limitations for combining trans-
ferable facial animation and voice conversion (or synthe-
sis) to create an ultimate audiovisual artifact that is able
to spoof even advanced random challenge-response based
liveness detection. In this study, we investigate the perfor-
mance of the state-of-the-art text-independent lip-sync de-
tection techniques under presentation attacks consisting of
audio recordings of the targeted person and corresponding
animated visual speech. Our experimental analysis with
three different photo-realistic visual speech animation tech-
niques reveals that generic synchrony models can be fooled
even with underarticulated but synchronized lip movements.
Thus, measuring audio-video synchrony or content alone
is not enough for securing audiovisual biometric systems.
Our preliminary findings suggest though that adaptation of
person-specific audiovisual speech dynamics is one possi-
ble approach to tackle these kinds of high-effort attacks.

1. Introduction
Nowadays, almost every mobile device is equipped with

a microphone and a front-facing video camera (e.g. laptops
and camera phones) while fingerprint and iris sensors are
only just emerging in consumer level devices. Therefore,
it is appealing to perform multi-modal person verification
combining two natural and non-intrusive biometric modali-
ties, namely face and voice. Although audiovisual biomet-
ric systems considering late multi-modal integration of face
and voice increases the recognition performance compared
to the individual modalities, they are also very vulnerable to
presentation attacks in which a person tries to masquerade
as another one by falsifying the biometric data of the tar-
geted person and thereby gaining an illegitimate advantage.
For instance, presentation of pre-recorded audio clip (replay

attack) together with a still photograph is already enough to
fool talking face verification considering late fusion [3].

One approach to counter audiovisual presentation attacks
is to apply dedicated countermeasures for each of the two
modalities [15] in order to determine if the presented face
and voice traits originate from a living legitimate user. Un-
fortunately, these kind of techniques have shown to have
problems in generalizing their great performance beyond
the development data (laboratory conditions) [15]. Thus,
much work is still needed to get them working in the open
environments of practical use case scenarios. Another way
to ensure the liveness of a subject is to exploit the intrinsic
property of speech and to analyse the synchronization and
dynamics of lip movements and voice when a passphrase
is pronounced. The measurement of correlation and joint
dynamics can be considered as liveness detection of the
recording process as it determines whether the content and
timing of captured audible and visual speech match, i.e. if
they were recorded from the same source at the same time.

The audiovisual synchrony detection can be performed
using text-independent [1, 2, 3, 7, 20], and text-dependent
[14, 17] approaches. Text-independent approaches are ef-
fective in detecting crude attacks in which the attacker
has managed to acquire only separate audio and video
recordings (or photo) of the targeted person that are pre-
sented to the biometric system. However, they are nat-
urally powerless under pre-recorded video replay attacks
with synchronized audiovisual speech. Text-dependent syn-
chrony assessment methods overcome this issue by utilizing
challenge-response approach in which the biometric system
prompts the user a randomly selected sentence or sequence
of digits [14, 17] (challenge) and then verifies whether the
preassigned utterance can be recognized in both modalities
within the specified time window (response).

The state-of-the-art real-time voice conversion tech-
niques are capable of fooling both humans and automatic
systems [6]. The recent advances in facial reenactment [21]
have enabled real-time re-rendering the facial expressions
and visual speech of the source actor on top of a video
stream of the targeted person in a photo-realistic manner



such that it seamlessly blends even with the real-world il-
lumination. As a consequence, there exists nowadays no
virtual technical limitations for combining transferable fa-
cial animation and voice conversion (or synthesis) to create
an interactive audiovisual artifact mimicking both voice and
face biometrics including matching visual speech. There-
fore, the use of generic lip-sync model or random challenge-
response based liveness check alone for securing audiovi-
sual biometric systems can be questioned. It is worth high-
lighting that Wells Fargo is experimenting with talking face
verification for mobile banking and the pilot system uses
only text-dependent random challenge-response based live-
ness check provided by SpeechPro’s VoiceKey.OnePass1.

The literature on facial animation in spoofing is scarce.
In [3], it was suggested that subject-specific synchrony
models might be robust to higher-effort forgeries like face
animation but no experimental validation was conducted.
Few studies [10, 22] have investigated the performance of
talking face verification systems under synthetic audiovi-
sual artifacts and demonstrated that they are indeed vulner-
able to these kind of attacks. However, these prior works
did not consider any kind of presentation attack detection
(PAD) in their experiments. Furthermore, while the com-
mercial facial animation software2 used in [22] is practical
in creating inveractive avatars, it is not capable of producing
photo-realistic synthetic talking face with natural motion.
In [10], the only association of the facial animation with the
corresponding synthesized speech was length of the output
video, i.e. only different facial expressions were animated
instead of (synchronized) visual speech.

In this present study, we address these issues and
investigate the performance of the state-of-the-art text-
independent lip-sync detection methods under audiovi-
sual presentation attacks combining audio recordings of
the targeted person with corresponding animated visual
speech. Our experimental analysis with three different
photo-realistic image-based visual speech animation tech-
niques [4, 8, 24] reveals that generic synchrony assessment
models can be fooled even with underarticulated animated
speech. Therefore, measuring audio-video synchrony or
content alone is indeed not enough for securing audio-
visual biometric systems. Our preliminary investigations
show though that adaptation of person-specific audiovisual
speech dynamics is one possible approach to tackle these
high-effort attacks, thus confirming the intuition of [3].

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce the lip-sync detection methods investi-
gated in this study. The visual speech synthesis techniques
used for fooling the synchrony measures are described in
Section 3. The experimental analysis is provided in Sec-
tion 4. Finally, our conclusions are presented in Section 5.

1http://speechpro-usa.com/media/news/2015-07-29
2http://www.reallusion.com/crazytalk/

2. Lip-sync detection
Fig. 1 depicts an overview of widely used generic lip-

sync detection pipeline. First, acoustic and visual features
are extracted separately from the given audiovisual speech
sequence. Then, the two different features are projected into
a common space in which their correlation can be evaluated
as a function of time [20]. Finally, a synchrony measure
is applied to determine whether the observed audiovisual
signals originate from the same source, i.e. a talking face.
The following sections introduce the audio-video synchrony
method investigated in this paper and describe briefly the
configurations of each phase in the pipeline.
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Figure 1: Generic lip-sync assessment pipeline.

2.1. Features

We chose to use the Mel-frequency cepstral coefficients
(MFCC) as audio features because they are used almost
without an exception in state-of-the-art lip-sync detection
methods. For the visual speech representation, we consid-
ered two fundamentally different approaches, static features
describing appearance of the mouth region, discrete cosine
transform (DCT), and dynamic features modeling the ac-
tual motion between consecutive video frames, space-time
auto-correlation of gradients (STACOG) [13]. DCT was se-
lected because it has been the most used feature in related
works, e.g. [1, 3], whereas STACOG are the state-of-the-art
features in audiovisual speech synchrony assessment [2].

2.2. Joint space analysis

We considered canonical correlation analysis (CCA)
based cross-modality mapping3 that was originally pro-
posed for audiovisual speech synchrony assessment in [20].
Given two signals X and Y , CCA finds a linear projection
that maximizes their cross-correlation in the resulting com-
mon space, thus the first pair of basis vectors (w1, z1) gives
the direction along which the signals are maximally corre-
lated. The second pair (w2, z2) of CCA basis vectors is
obtained by maximizing the same correlation but subject
to the constraint that the projections are to be uncorrelated
with the first pair of canonical components. This procedure
is iterated in order to find the remaining CCA basis vectors
wi and zi that form an orthonormal basis for the joint space.

3We also tried co-inertia analysis (CoIA) [5] as cross-modality map-
ping method because it has shown to be effective in many related studies,
e.g. [1, 3, 7]. However, we were not able to achieve comparable perfor-
mance to CCA with CoIA in our experiments.
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Figure 2: Overview of the considered a) generative model based [8] and b) concatenative visual speech synthesis [24].

2.3. Synchrony measure

The lip-sync detection is based on the synchrony mea-
sure proposed in [3]. Given the acoustic and visual speech
features X and Y of an audiovisual sequence, their syn-
chrony S is estimated by computing the overall correlation
of the two projected speech signals along the first K dimen-
sions of the joint space:

SW,Z(X,Y ) = 1/K

K∑
k=1

|corr(Xwk, Y zk)| . (1)

3. Visual speech synthesis
This section gives a brief overview on the three differ-

ent image-based visual speech synthesis techniques used for
evaluating the robustness of generic lip-sync detection. The
animation methods considered in this work can be divided
into model based and concatenative approaches [16].

3.1. Generative model based visual speech synthesis

One way to synthesize novel speech videos is to
parametrize the original visual speech and build a statis-
tical model capable of generating novel speech from text
input [16]. Ezzat et al. [8] proposed to build a multidimen-
sional morphable model (MMM) based on the given visual
speech corpus and then learning the trajectories of the orig-
inal speech in the resulting MMM space (see, Fig. 2a).

The MMM is built by selecting a reference image and a
set of images containing key mouth shapes and computing
the optical flows that morph each key image to the reference
image. Any novel video frame can be then represented in
the model space by a set of parameters that are used to syn-
thesize the target frame based on the reference image and
the pre-computed optical flow vectors. During trajectory
analysis, the entire corpus is projected into the model space

to build phoneme models, i.e. time series of parameters.
The synthesis of novel speech based on a target phoneme
sequence is solved as a regularization problem by minimiz-
ing both target and smoothness terms of the trajectory in the
model space. Given a time series of parameters, MMM is
then able to synthesize individual images that form the final
synthesized visual speech video.

The MMM requires relatively large video corpus for ev-
ery novel speaker (about 8 minutes of speech was used in
[8]). In [4], a matching-by-synthesis approach was pro-
posed to transfer an original MMM trained from a large
speech corpus to a novel person with limited training data
(only about 15 seconds of video). A semi-automatic (i.e.
manually initialized) approach was used for replacing all
the original prototype images with ones of the novel subject
based on the similarity of mouth appearance. The trans-
ferable MMM (T-MMM) can already produce animated
speech that resembles the appearance of the novel person
but with the speaking style of the original user. Thus, an
adaptation method was also introduced in [4] to refine the
MMM phoneme model to match the speaking style of the
novel person.

3.2. Concatenative visual speech synthesis

Instead of synthesizing images using a generative model
like MMM, novel visual speech can be generated by con-
catenating a set of original video segments of the target
speaker that match (partially) the target phoneme sequence.
These kind of concatenative methods have to deal with the
trade-off between the continuity of the synthesized visual
speech and the quality of lip-syncing as stitching of longer
segment leads to more natural motion while the resulting
animation may not match the phonetic context that well.

Zhou et al. [24] proposed a concatenative visual speech
animation system (see, Fig. 2b) that aims at minimizing this



trade-off. The given visual speech corpus is pre-processed
and indexed in order to speed up the analysis stage that
needs to be performed separately for every target phoneme
sequence. During analysis, an optimal set of variable-length
phoneme segments are selected with respect to concatena-
tion penalty (continuity) and cost for replacing one partic-
ular phoneme by some other (lip-sync) based on external
phoneme models. Novel visual speech is then synthesized
by concatenating the chosen overlapping video segments so
that their appearance similarity is maximized at the transi-
tion point.

4. Experimental analysis
The following section introduces first the experimental

setup. The experimental analysis itself consist of three main
steps: evaluating 1) the effectiveness of generic lip-sync de-
tection under audiovisual replay attacks, and 2) its robust-
ness under audiovisual replay attacks and the different vi-
sual speech animation based attacks in cross-database sce-
nario, and 3) exploring the effectiveness of subject-specific
audiovisual synchrony detection to counter facial animation
based attacks.

4.1. Experimental setup

In the literature, different configurations of MFCC fea-
tures have been considered for describing the audible
speech. Inspired by [1, 2, 3], three variations combining the
13 first MFCC coefficients and their first (∆) and second-
order (∆2) derivatives are used in our experiments (referred
to as MFCC, MFCC-∆ and MFCC-∆-∆2). Accurate char-
acterization of the speech is not the objective when evalu-
ating the degree of synchrony in the observed audiovisual
speech [2]. Thus, we compute the audio features at video
frame rate to simplify visual speech feature extraction.

We aimed at mitigating the effect of inaccurate mouth
detection in visual speech feature extraction while still
keeping the pipeline automatic. We selected the face land-
mark detector proposed in [11] because it performs robustly
on the used audiovisual datasets. We used the implementa-
tion available in the dlib library [12] for determining eye
and mouth locations in every video frame and followed the
strategy proposed in [23] to get a good approximation of
the whole mouth region (see, Fig. 3). The resulting rect-
angular mouth image is the resized to 70 × 40 pixels from
which we extract the first 35 DCT coefficients correspond-
ing to the low spatial frequencies in a zigzag way and the
1584-dimensional STACOG feature vector using the default
parameters of the publicly available implemention [13].

This study focuses mainly on investigating whether
audio-video synchrony detection techniques are able to tell
a difference between the visual speech animation based at-
tacks and the corresponding original videos. Therefore, the
number of CCA dimensions K used in synchrony measure

(see, Equation 1) is tuned separately for each dataset and
feature configuration so that best possible performance is
obtained in detecting unsynchronized audiovisual speech.
We use equal error rate (EER) to measure how well the lip-
sync detection methods are able to determine whether the
observed audiovisual speech is originated from a genuine
subject or an attack.

4.2. Generic lip-sync model for audiovisual replay
attack detection

We begin our experiments by evaluating the effective-
ness of the different lip-sync detection methods under re-
play attacks combining audio and video recorded from dif-
ferent sources. We reproduced the experiments of [2] by
following the same evaluation protocol on the the XM2VTS
database [18]. The dataset consisting of audiovisual speech
sequences of 295 subjects is split into two subject-disjoint
halves. The audiovisual replay attacks are created by
switching the audio tracks between sequences of the same
person recorded during four sessions. Every subject is pro-
nouncing the same sentence (Joe took fathers green shoe
bench out), thus high level of synchrony is probably per-
ceived between the observed audio and video. The lip-sync
detection models are trained on the real videos of one group
and the resulting model is the evaluated on the other group.
This process is repeated by alternating the role of the two
folds and reported EER is the average of the two tests.

Method Improved Original [2]
DCT+MFCC 10.52 21.10
DCT+MFCC-∆ 10.86 -
DCT+MFCC-∆-∆2 9.64 -
STACOG+MFCC 6.21 10.70
STACOG+MFCC-∆ 5.58 -
STACOG+MFCC-∆-∆2 5.75 -

Table 1: Baseline performance of different generic lip-sync
detection methods in terms of EER (%) under audiovisual
replay attacks with unsynchronized audio and video tracks.

The baseline performance of the different audio-video
synchrony assessment methods under the traditional replay
attacks is reported in Table 1. The results are consistent [2]
as the configurations using STACOG as visual features are
more robust than the ones using DCT. However, it is worth
noting that both visual features achieve better performance
than the best results reported in [2], thus confirming clearly
the benefits of the more advanced mouth localization.

4.3. Generic lip-sync model under animated visual
speech based attacks

It is reasonable to assume that in real-world applications
it is not feasible to train the synchrony models on the audio-



Figure 3: The background compositing process: a background video frame (with natural head and eye movement), a mask
with generated visual speech and the final composite video frame, respectively; and used mouth detection strategy (right)
where mouth analysis window is visualized with green and masking used in animation with white outline.

visual data of the end-users captured with the target device
because time-consuming data collection is not particularly a
desirable property in biometric systems. Therefore, generic
lip-sync models trained on large-scale representative devel-
opment datasets are applied in practical applications.

In the following, we conduct a set of cross-database ex-
periments to simulate this condition by using the generic
synchrony models of trained on the XM2VTS corpus and
evaluating their robustness on three additional datasets con-
sisting of traditional audiovisual replay attacks and three
different photo-realistic facial animation based attacks.
From now on, all audiovisual replay attacks are created by
switching the audio and video tracks between original au-
diovisual speech sequences. This corresponds to an attack
scenario in which audio and video originate from the same
person uttering different sentences.

All used facial animation techniques require head pose
normalization prior superimposing a mask to extract the re-
gion of interest (ROI), e.g. mouth-chin area, used for cre-
ating the visual speech synthesis. The final output videos
of talking faces in every dataset have been created by com-
positing the synthesized mouth onto a background sequence
containing natural head and eye movements (see, Fig. 3).
The stitching is conducted by replacing the mouth-chin area
normalized from the original image with the synthesized
one and undoing the pose correction. The mouth mask is
smoothed at the edges to perform a seamless blend between
the background image and the synthesized mouth. The in-
terested reader is referred to see [8, 24] for more details.

There is some overlap between the background video
frame and the mouth region used for computing the visual
speech features (see, Fig. 3). It is worth highlighting that
we do not exploit the possibly visible artifacts introduced in
making the composite videos, e.g. boundaries between the
mouth mask and the background sequence. First, the over-
lap corresponds to facial regions whose motion is insignif-
icant compared with that of the mouth area. Furthermore,
the original and the corresponding animated videos undergo
through the same video compression pipeline, in order to
mitigate the effect of factors unrelated to the audio-video
synchrony, e.g. video codec and resolution, and possibly

Figure 4: Examples of original video frames and corre-
sponding synthetic images generated with MMM (top) and
concatenative visual speech synthesis datasets (bottom).

the composite artifacts as well. Only genuine audiovisual
speech samples are seen during training, i.e. no prior knowl-
edge of the attacks is introduced, thus the lip-sync models
cannot describe any other cues besides natural synchrony.

4.3.1 Underarticulated visual speech animation

We implemented the MMM based visual speech animation
method [8] and collected a visual speech corpus consist-
ing of 196 videos of one subject uttering naturally phonet-
ically balanced TIMIT sentences [9]. 186 videos of the
dataset were used for building the MMM, while the remain-
ing ten sequences were left for testing. The resolution of the
videos is 640× 480 and frame rate 30 fps. The gradient de-
scent learning method used for improving the articulation of
MMM [8] does not perform well on our visual speech cor-
pus. The untrained MMM tends to average out the mouth
movements so that it looks underarticulated but the resulting
speech is still synchronized with the audio. This crude fa-
cial animation can be considered as the first challenge to the
lip-sync detection methods. Fig. 4 shows some snapshots
of both real and corresponding animated video frames.

Table 2 presents the performance of the different audio-
visual synchrony assessment techniques under the replay
attacks and attacks with underarticulated visual speech an-
imation of the MMM dataset. The results depict that the



Method Replay Animation
DCT+MFCC 25.56 40.00
DCT+MFCC-∆ 20.00 40.00
DCT+MFCC-∆-∆2 20.00 30.00
STACOG+MFCC 3.33 10.00
STACOG+MFCC-∆ 10.00 30.00
STACOG+MFCC-∆-∆2 13.33 20.00

Table 2: Cross-database performance of the generic lip-
sync detection methods in terms of EER (%) under the re-
play and underarticulated facial animation based attacks of
the MMM dataset.

generic lip-sync detection is able to generalize in detecting
audiovisual replay attacks beyond the development set. The
more important finding is, however, that the performance
of all lip-sync based liveness detection techniques degrades
dramatically when facing the new attack type based on
the underarticulated visual speech synthesized based on the
original audio track. Thus, it seems that even crude but
smooth facial animation synchronized with audio content
is enough for fooling liveness detection based on generic
lip-sync models.

4.3.2 Transferable visual speech animation

While the excessive requirement of training data of the tar-
geted person limits the use of MMM [8], the transferable
MMM [4] is more realistic in real-world spoofing scenarios.
We experimented also with a small T-MMM dataset pro-
vided by the authors of [4]. Each of the ten short video clips
includes a person uttering one digit from one to ten. The an-
imated videos were generated using the phoneme model of
the original speaker and the adapted model mimicking the
speaking style of the novel person, thus the dataset consists
of ten real and 20 animated videos. The resolution of videos
is 720 × 480 and frame rate 30 fps. Both real and animated
visual speech are well-articulated. In real-world applica-
tions, the use of single digits is not probably enough for
secure and robust authentication, thus we combine the dig-
its into variable length passphrases like in [17]. The length
of the PIN codes varies from three to five and the different
permutations contain the same digit only once.

The results of the experiments on the T-MMM dataset
can be seen in Table 3. Again, while the generic audio-
video synchrony models are able to generalize in detect-
ing audiovisual replay attacks very well, their performance
drops significantly when the transferable facial animation
is introduced to the systems. Similarly to [17], increasing
the number of digits in passphrase decreases the EER sug-
gesting that longer PIN codes improve the robustness of the
system under replay attack detection.

4.3.3 Concatenative visual speech animation

The concatenative visual speech model [24] was build us-
ing the publicly available Audiovisual Database of Spoken
American English [19] where the participants were ask to
speak 238 words and 166 TIMIT sentences [9]. The subject
labeled as ”F05” was chosen as the animation character. In
order to maximize the quality visual speech synthesis, we
used leave-one-out method for training the concatenative vi-
sual speech model, i.e. 154 videos is used for training the
visual speech model for creating an animation test sample
and the process is repeated for all 155 videos. Thus, the re-
sulting dataset contains in total 155 real and 155 animated
videos. The resolution of output videos is 450 × 300 and
frame rate 30 fps. Fig. 4 shows some snapshots of both real
and corresponding animated talking faces.

The experimental results on this dataset are shown in Ta-
ble 4. Also in this case, the findings are consistent with the
previous experiments as the lip-sync based liveness detec-
tion methods cannot tell a difference between the facial an-
imation and original visual speech sequences but performs
well in detecting audiovisual replay attacks.

4.4. Subject-specific tuning

Intuitively, the source actor or model directing the facial
reenactment or voice conversion (or synthesis) process is
unlikely to be able to mimic the speaking style of the tar-
geted person. Therefore, it was suggested in [3] that use of
client-specific synchrony models could possibly still show
strong robustness to high-effort impostor attacks such as
voice conversion and facial animation.

Next, we perform preliminary experiments and try to
find out if adaptation of subject-specific visual and audible
speech dynamics improve the robustness of lip-sync based
liveness detection. Since the data provided by the authors
of [4] does not provide enough data for both training and
testing the synchrony models, we consider only the MMM
(see, Section 4.3.1) and concatenative visual speech synthe-
sis datasets (see, Section 4.3.3). We follow the experimental
protocol used in Section 4.2 and divide the datasets into two
halves, which are used for training and testing in turns. For
the sake of simplicity, we chose only the best-performing
synchrony assessment methods for this experiment.

The MMM dataset is too small for training the high-
dimensional STACOG features, thus the combination of
DCT+MFCC-∆-∆2 was chosen on this corpus. Table 5
depicts that the subject-specific lip-sync detection method
is able to achieve perfect performance under both attack
types of the MMM dataset. This can be explained with two
factors: 1) the videos in MMM dataset are quite long and
the utterances vary between videos when the asynchrony in
the replay attacks is obvious (for human observer), and 2)
even though the synthesized visual speech is synchronized
with the original audio content, the visual speech does not



3 digits 4 digits 5 digits
Method Replay Animation Replay Animation Replay Animation
DCT+MFCC 23.00 38.33 16.67 34.76 14.05 32.74
DCT+MFCC-∆ 28.17 48.75 23.33 52.86 18.33 50.40
DCT+MFCC-∆-∆2 29.17 55.42 20.48 55.24 16.27 54.76
STACOG+MFCC 19.17 32.50 16.19 36.43 13.10 38.10
STACOG+MFCC-∆ 11.17 20.00 8.48 16.43 5.32 13.10
STACOG+MFCC-∆-∆2 18.33 35.00 13.81 39.52 8.10 35.32

Table 3: Cross-database performance of the generic lip-sync detection methods in terms of EER (%) under the replay and
well-articulated facial animation based attacks of the T-MMM dataset.

Method Replay Animation
DCT+MFCC 14.15 33.33
DCT+MFCC-∆ 17.13 35.95
DCT+MFCC-∆-∆2 17.65 32.03
STACOG+MFCC 12.42 28.76
STACOG+MFCC-∆ 12.57 31.37
STACOG+MFCC-∆-∆2 11.39 32.03

Table 4: Cross-database performance of the generic lip-
sync detection methods in terms of EER (%) under the re-
play and facial animation based attacks of the concatenative
visual speech synthesis dataset.

Method Replay Animation
Generic model 20.00 30.00
Subject-specific model 0.00 0.00

Table 5: Performance comparison between generic and
subject-specific lip-sync models in terms of EER (%) un-
der the two different attack scenarios of the MMM dataset.

resemble the speaking style of the targeted person due to
the underarticulation issue (see, Section 4.3.1). Even if the
MMM based model was trained to improve the articulation,
the subtle dynamics of a talking mouth may be lost after
smoothing the synthesized trajectories [25].

The combination of STACOG+MFCC-∆-∆2 was se-
lected for the concatenated visual speech synthesis dataset.
From the results presented in Table 6, we can see that this
dataset is more challenging but still the subject-specific lip-
sync model is able to separate both audiovisual replay and
facial animation based attacks quite well from real videos.
The concatenated visual speech synthesis preserves the true
dynamics of the original speaker much better than MMM.
However, the synthesized videos suffer occasionally of
abrupt changes of facial textures or jerky motions between
two frames that contain phonemic transitions. Even though

the method tries to find positions in the original videos
where a transition can be made to other positions with-
out introducing these noticeable discontinuities, the train-
ing speech corpus is unlikely to contain smooth transitions
between all possible phoneme combinations. Furthermore,
variations in head pose might introduce similar effects even
if pre-processing (pose normalization) is applied. The an-
imation artifacts explain why the client-specific synchrony
model is able to separate animated visual speech based at-
tacks from the original videos quite well.

The results on both datasets are very promising as the
subject-specific synchrony models are able to perform ro-
bustly on both audiovisual attacks. These preliminary find-
ings suggest that adaptation of person-specific audiovisual
speech dynamics might be indeed one possible approach to
tackle these sophisticated high-effort attacks, thus confirm-
ing the intuition proposed in [3].

Method Replay Animation
Generic model 11.39 32.03
Subject-specific model 2.61 5.89

Table 6: Performance comparison between generic and
subject-specific lip-sync models in terms of EER (%) un-
der the two different attack scenarios of the concatenated
visual speech synthesis dataset.

5. Conclusion
We investigated the performance of the text-independent

state-of-the-art lip-sync based liveness detection techniques
under presentation attacks consisting of audio recordings of
the targeted person and corresponding photo-realistic ani-
mated visual speech. Our experimental analysis with three
different image-based visual speech synthesis techniques
reveals that generic synchrony measures can be fooled even
with underarticulated lip movements. Therefore, measuring
audio-video synchrony or content alone is not enough for
securing audiovisual biometric systems.



Our preliminary investigations suggest though that adap-
tation of person-specific audiovisual speech dynamics is
one possible approach to tackle these high-effort forgeries
because speech dynamics of a targeted person are hard to
synthesize. Since time-consuming data collection during
enrollment phase is undesirable property for biometric sys-
tems, the visual speech model could be gradually tuned with
data captured during successful verification attempts.

In future, more representative audiovisual databases are
needed for conducting comprehensive follow-up studies
on the use of person-specific lip dynamics for recognition
and presentation attack detection purposes and developing
methods explicitly describing the facial animation related
artifacts, e.g. image/video quality defects and unnatural
motion. The datasets should consider logical or presen-
tation attacks combining both synthetic voice and visual
speech.
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