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Abstract— The vulnerabilities of face-based biometric sys-
tems to presentation attacks have been finally recognized but
yet we lack generalized software-based face presentation attack
detection (PAD) methods performing robustly in practical
mobile authentication scenarios. This is mainly due to the fact
that the existing public face PAD datasets are beginning to
cover a variety of attack scenarios and acquisition conditions
but their standard evaluation protocols do not encourage
researchers to assess the generalization capabilities of their
methods across these variations. In this present work, we
introduce a new public face PAD database, OULU-NPU, aiming
at evaluating the generalization of PAD methods in more
realistic mobile authentication scenarios across three covariates:
unknown environmental conditions (namely illumination and
background scene), acquisition devices and presentation attack
instruments (PAI). This publicly available database consists of
5940 videos corresponding to 55 subjects recorded in three
different environments using high-resolution frontal cameras
of six different smartphones. The high-quality print and video-
replay attacks were created using two different printers and
two different display devices. Each of the four unambiguously
defined evaluation protocols introduces at least one previously
unseen condition to the test set, which enables a fair comparison
on the generalization capabilities between new and existing
approaches. The baseline results using color texture analysis
based face PAD method demonstrate the challenging nature of
the database.

I. INTRODUCTION

The use of face modality is especially appealing in mobile
biometrics because it is highly accepted among users, consid-
ering the ”selfie generation”, and can be also easily integrated
in the natural interaction with the devices. Moreover, nowa-
days almost every mobile device is equipped with a decent
front-facing camera, while fingerprint and iris sensors are
just emerging. Face recognition is indeed being increasingly
deployed in mobile applications. As an example, MasterCard
is trialling a ”selfie verification” feature to secure its new
mobile payment service.

Spoofing (or presentation attacks as defined in the current
ISO/IEC 30107-3 standard [8]) poses serious security issue
to face recognition or biometric systems in general. The
vulnerabilities of face-based biometric systems to spoofing
have been now recognized and face presentation attack
detection (PAD) has finally received significant attention in
the research community [1], [3], [7]. Yet we lack generalized
software-based face PAD methods performing robustly in the
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unknown operational conditions of practical mobile authenti-
cation scenarios. For instance, in a recent study [9], six com-
mercial face recognition systems, namely Face Unlock, Face-
lock Pro, Visidon, Veriface, Luxand Blink and FastAccess,
were easily fooled with crude photo attacks using images of
the targeted person downloaded from social networks. Even
worse, also their dedicated challenge-response based liveness
detection mechanisms were circumvented using simple photo
manipulation to imitate the requested facial motion (liveness
cues), including eye blinking and head rotation.

The existing public datasets for developing and bench-
marking software-based face PAD methods are beginning to
cover a variety of attack scenarios and acquisition conditions
[4], [5], [13], [15]. However, the main problem is that their
standard evaluation protocols do not encourage researchers
to assess the generalization capabilities of their PAD methods
across these variations partly due to the lack of data. Instead,
the methods are evaluated using the homogeneous train
and test sets, i.e. corresponding to exactly the same known
operating conditions and artifacts, when many of the existing
face PAD methods achieve astonishing, near 0%, error rates.
The preliminary studies on generalized face spoof detection
[2], [3], [6], [12], [13] have shown that these reported
performances are indeed overly optimistic estimate on their
actual performance in real-world authentication applications.
While the existing datasets have been and continue to be
useful for the research community, the remarkable results
in intra-database experiments but lack of generalization
capabilities among face PAD methods indicates that more
challenging configurations are needed before the research on
non-intrusive software-based face spoof detection can reach
the next level.

In this paper, we address this issue and introduce a
new public face PAD database, OULU-NPU, which aims at
evaluating the generalization of PAD methods in more real-
istic mobile authentication scenarios across three covariates:
unknown environmental conditions (namely illumination and
background scene), acquisition devices and presentation at-
tack instruments (PAI). Altogether, the database consists of
5940 videos corresponding to 55 subjects recorded in three
different illumination conditions using high-resolution frontal
cameras of six different recent smartphones. High-quality
print and video-replay attacks were created using two printers
and two display devices. The first three evaluation protocols
assess the effect of each covariate separately, i.e. each of
them introduces one previously unseen condition to the test



TABLE I: Comparison between the existing face PAD databases and the new OULU-NPU.

Database # subjects Acquisition devices # lighting scenarios PAIs # real/attack videos Fixed validation set
Replay-Attack [4] 50 1 laptop 2 1 printer & 2 displays 200/1000 Yes
CASIA-FASD[13] 50 3 webcams 1 1 printer & 1 display 150/450 No
MSU-MFSD [15] 35 1 laptop & 1 smartphone 1 1 printer & 2 displays 110/330 No
Replay-Mobile [5] 40 1 smartphone & 1 tablet 5 1 printer & 1 display 390/640 Yes

OULU-NPU 55 6 smartphones 3 2 printers & 2 displays 1980/3960 Yes

set which is not present in the training material. The fourth
protocol is designed to simulate a real-world scenario where
all the three variations were taken into consideration at the
same time. In addition, the 55 subjects are divided into
subject-disjoint training, development and testing because the
use of unambiguous evaluation protocol with fixed validation
set enables unbiased comparison between new and existing
approaches. We provide baseline results of a state-of-the-
art method based on color texture analysis [2] that clearly
demonstrate the challenging nature of the database.

The rest of this paper is organized as follows. In Section
II, we introduce the evolution of publicly available face PAD
databases and discuss their advantages and shortcomings.
The new OULU-NPU face presentation attack detection
database is presented in Section III. Section IV describes
the benchmark experiments and results. Finally, Section V
concludes the paper.

II. RELATED WORK

In the very early phase of face PAD related research,
even software-based approaches were evaluated on pro-
prietary databases. The use of private data can be seen
somewhat reasonable when demonstrating proof-of-concept
custom imaging solutions or (random) challenge-response
based approaches introducing specific user interaction de-
mands. The results of non-intrusive software-based methods,
however, should be easily reproduced and fairly compared
because they are just further processing the same images
(or videos) used for the actual authentication purposes or
additional data captured with conventional cameras. Further-
more, the lack of publicly available data is likely to rule
out many potential researchers working on PAD. It was not
a coincidence that after the release of the first public PAD
dataset, NUAA Photograph Imposter Database (NUAA-PID)
[11], the research on face PAD exploded.

Shortly after NUAA-PID, larger scale video-based pub-
lic datasets with both print and video-replay attacks were
released, namely CASIA Face Anti-Spoofing Database
(CASIA-FASD) [15] and Replay-Attack Database [4], each
consisting of 50 subjects. These databases introduce some
variations in the acquisition conditions. The data in the
CASIA-FASD was captured using three cameras with vary-
ing level of image quality and resolution, i.e. low, medium
and high, while the Replay-Attack Dataset considers two
authentication scenarios with two illumination conditions
and backgrounds, i.e. controlled and adverse. Although the
CASIA-FASD, is smaller than the Replay-Attack Database,
it has shown to be more challenging benchmark dataset due

to the diversity in the data, including attack types and (less-
controlled) acquisition conditions in general, e.g. standoff
distance and input sensor quality.

The Replay-Attack Database and CASIA-FASD are still
the main datasets used for developing and benchmarking face
PAD methods. However, these datasets are not representative
of the current mobile authentication scenarios. First, the data
acquisition was conducted with generic web cameras or con-
ventional digital cameras whose image quality and resolution
is either too low or too high considering the latest generations
of mobile devices. Furthermore, the use of stationary cameras
does not correspond to the mobile applications where the
user holding the device poses additional variations, thus new
challenges, in the acquired face videos, including global mo-
tion, sudden illumination changes, extreme head poses and
various background scenes. Face PAD in mobile scenarios
does not have to be more difficult by default but the nature
of the development and benchmark data must be replicate
realistic of mobile authentication scenario [13].

Recently, the MSU Mobile Face Spoof Database (MSU-
MFSD) [13] and the Replay-Mobile database [5] introduced
mobile authentication scenarios to public face PAD bench-
mark datasets. In both datasets, two different acquisition
devices were used for recording the real accesses and attack
attempts. While the MSU-MFSD considers only small illu-
mination variations as the real subjects were recorded in the
same laboratory environment, the Replay-Mobile Database
includes five different mobile scenarios and paying special
attention to the lighting conditions. Therefore, it is very
unfortunate that the dataset suffers from a severe flaw as
the background scenes differ between the real accesses and
the attack attempts. Thus, the dataset can be probably easily
broken with algorithms utilising the whole video frame
(context) for PAD, like [10].

The current publicly available databases have been a very
important kick-off for finding out best practices for face PAD
and have provided valuable insight on the different aspects in
solving the problem. Many potentially useful approaches for
face PAD, including from liveness cues, like eyeblink detec-
tion [10], to static image propeties, like texture [2], [3], [10]
and distortions in image quality [13], have been explored.
However, the databases have been partially misleading the
research into wrong direction as well as a relatively large
part of the research has been concentrating on breaking the
datasets instead of really trying to bring new theoretical
insight into the problem of face PAD. As an outcome, we still
lack low-cost generalized methods that could be transferred
to practical applications like mobile authentication scenarios.



Fig. 1: Samples of the subjects recorded in the database.

While existing publicly available databases still continue
to be valuable tools for the community, more challenging
datasets are needed to reach the next level and solve some
fundamental generalization related problems in face PAD.

As seen above and in Table I, the existing public datasets
are beginning to cover the different variations in e.g. il-
lumination, acquisition devices and the attacks themselves,
that will be definitely faced in real operational conditions.
However, the main issue is that they do not provide default
evaluation protocols for evaluating the actual generalization
capabilities of the new PAD methods across these covariates.
One reason for this is that the databases are rather small,
when also the variations in some factors are still limited. For
instance, the MSU-MFSD considers only one illumination
condition and only two different cameras were employed
in collecting both the MSU-MFSD and the Replay-Mobile
Database. The variation in PAIs is another important factor
that cannot be extensively studied using the existing bench-
marks because they include at most one high-quality print
and video-replay attack.

It is also worth highlighting that some of the benchmark
datasets, like the CASIA-FASD and MSU-MFSD, contain
separate folds only for training and testing, which may
cause bias due to ”data peeking”. While independent (third-
party) testing [14] is practically impossible to arrange with-
out collective evaluations, the use of pre-defined training,
development and test sets would mitigate the effect of tuning
the methods on the test data, thus allowing a fairer direct
comparison between new and existing approaches.

III. THE OULU-NPU FACE PAD DATABASE

In this work, we address many of the issues mentioned
in the previous section and introduce the new OULU-NPU
face PAD database. The aim of the dataset is particularly
at evaluating the generalization of new PAD methods in
more realistic mobile authentication scenarios by considering
three covariates: unknown environmental conditions (namely
illumination and background scene), acquisition devices and
presentation attack instruments (PAI), separately and at once.
In the following, we describe the new OULU-NPU face PAD
database and its evaluation protocols in detail.

A. Collection of real access attempts
The OULU-NPU presentation attack detection database

includes short video sequences of real access and attack

(a) Session 1 (b) Session 2 (c) Session 3

Fig. 2: Sample images of a real subject highlighting the
illumination conditions across the three different scenarios.

attempts corresponding to 55 subjects (15 female and 40
male). Figure 1 shows samples of these subjects. The real
access attempts were recorded in three different sessions
separated by a time interval of one week. During each
session, a different illumination condition and background
scene were considered (see Figure 2):

• Session 1: The recordings were taken in an open-plan
office where the electronic light was switched on and the
windows blinds were up and the windows were located
behind the users.

• Session 2: The recordings were taken in a meeting
room where the electronic light was the only source
of illumination.

• Session 3: The recordings were taken in a small office
where the electronic light was switched on and the
windows blinds were up and the windows were located
in front of the users.

During each session, the subjects recorded two videos of
themselves (one for the enrollment and one for the actual
access attempt) using the frontal cameras of the mobile
devices. In order to simulate realistic mobile authentication
scenarios, the video length was limited to five seconds and
the clients were asked to hold the mobile device like they
were being authenticated but without deviating too much
from their natural posture while normal device usage.

The recent advances in sensor technology have introduced
high-resolution cameras also to the mid range models of



(a) Samsung (b) HTC (c) MEIZU (d) ASUS (e) Sony (f) OPPO

Fig. 3: Sample images showing the image quality of the different camera devices.

the last generation mobile devices capable of capturing
good quality images (and videos) in daylight and indoor
conditions. Considering that the acquisition quality of the
embedded (both front and rear) cameras can be expected
to be growing generation by generation, we selected six
smartphones with high-quality front-facing cameras in the
price range from e250 to e600 for the data collection:

• Samsung Galaxy S6 edge (Phone 1) with 5 MP frontal
camera.

• HTC Desire EYE (Phone 2) with 13 MP frontal camera.
• MEIZU X5 (Phone 3) with 5 MP frontal camera.
• ASUS Zenfone Selfie (Phone 4) with 13 MP frontal

camera.
• Sony XPERIA C5 Ultra Dual (Phone 5) with 13 MP

frontal camera.
• OPPO N3 (Phone 6) with 16 MP rotating camera.

The videos were recorded at Full HD resolution, i.e.
1920 × 1080 using the frontal cameras of the six mobile
devices and the same camera software1 installed on each
device. Even though the nominal camera resolution of some
mobile devices is the same, like Sony XPERIA C5 Ultra
Dual, HTC Desire EYE and ASUS Zenfone Selfie (13 MP),
significant differences can be observed in the quality of the
resulting videos as demonstrated in Figure 3.

B. Attack creation

Assuming that the legitimate users are trying to get au-
thenticated in multiple conditions, it is important to collect
the data of genuine subjects in multiple lighting conditions
from the usability point of view. In contrast, the attackers
try to present as high-quality artifact as they can to the
input camera in order to maximize the chance of successfully
fooling a face biometric system. Therefore, the attacks should
be carefully designed and conducted in order to guarantee
that they are indeed hard to detect.

During each of the three sessions, a high-resolution photo
and video of each user was captured using the back camera
of the Samsung Galaxy S6 Edge phone capable of taking 16
MP still images and Full HD videos. These high resolution
photos and videos were then used to create the presentation

1http://opencamera.sourceforge.net/

(a) Print 1 (b) Print 2 (c) Replay 1 (d) Replay 2

Fig. 4: Samples of print and replay attacks taken with the
front camera of Sony XPERIA C5 Ultra Dual.

attacks. The attack types considered in this database are print
and video-replay attacks:

• Print attacks: The high resolution photos were printed
on A3 glossy paper using two different printers: a Canon
imagePRESS C6011 (Printer 1) and a Canon PIXMA
iX6550 (Printer 2).

• Video-replay attacks: The high-resolution videos were
replayed on two different display devices: a 19” Dell
UltraSharp 1905FP display with 1280×1024 resolution
(Display 1) and an early 2015 Macbook 13” laptop with
Retina display of 2560× 1600 resolution (Display 2).

The print and video-replay attacks were then recorded
using the frontal cameras of the six mobile phones. While
capturing the print attacks, the facial prints were held by
the operator and captured with stationary capturing devices
in order to maximize the image quality but still introduce
some noticeable motion in the print attacks. In contrast,
when recording the video-replay attacks both of the capturing
devices and PAIs were stationary. Furthermore, we paid
special attention that the background scene of the attacks
matches the real accesses during each session and that the
attack videos do not contain the bezels of the screens or
edges of the prints. Figure 4 shows samples of the attacks
captured using the Sony XPERIA C5 Ultra Dual.

C. Evaluation protocols

To evaluate the performances of the face PAD methods on
the OULU-NPU database, we designed four protocols.



TABLE II: The detailed information about the video recordings in the train, development and test sets of each protocol.

Protocol Subset Session Phones Users Attacks created using # real videos # attack videos # all videos

Protocol I
Train Session 1,2 6 Phones 1-20 Printer 1,2; Display 1,2 240 960 1200
Dev Session 1,2 6 Phones 21-35 Printer 1,2; Display 1,2 180 720 900
Test Session 3 6 Phones 36-55 Printer 1,2; Display 1,2 240 960 1200

Protocol II
Train Session 1,2,3 6 Phones 1-20 Printer 1; Display 1 360 720 1080
Dev Session 1,2,3 6 Phones 21-35 Printer 1; Display 1 270 540 810
Test Session 1,2,3 6 Phones 36-55 Printer 2; Display 2 360 720 1080

Protocol III
Train Session 1,2,3 5 Phones 1-20 Printer 1,2; Display 1,2 300 1200 1500
Dev Session 1,2,3 5 Phone 21-35 Printer 1,2; Display 1,2 225 900 1125
Test Session 1,2,3 1 Phone 36-55 Printer 1,2; Display 1,2 60 240 300

Protocol VI
Train Session 1,2 5 Phones 1-20 Printer 1; Display 1 200 400 600
Dev Session 1,2 5 Phones 21-35 Printer 1; Display 1 150 300 450
Test Session 3 1 Phone 36-55 Printer 2; Display 2 20 40 60

1) Protocol I: The first protocol is designed to evaluate
the generalization of the face PAD methods under different
environmental conditions, namely illumination and back-
ground scene. As the data is recorded in three sessions
with different illumination conditions and locations, the train,
development and evaluation sets can be constructed using
video recordings taken from different sessions, see Table II.

2) Protocol II: Since different PAI (i.e. different displays
and printers) create different artifacts, it is necessary to
develop face PAD methods robust to this kind of variations.
The second protocol is designed to evaluate the effect of the
PAI variation on the performance of the face PAD methods
by introducing previously unseen PAI in the test set as shown
in Table II.

3) Protocol III: One of the critical issues in face anti-
spoofing and image classification in general is the gener-
alization across different acquisition devices. A Leave One
Camera Out (LOCO) protocol is designed to study the sensor
interoperability of the face PAD methods. In each iteration,
the real and the attack videos recorded with five smartphones
are used to train and tune the countermeasure model. Then,
the generalization of the method is assessed using the videos
recorded with the remaining smartphone.

4) Protocol IV: In the last and most challenging scenario,
the previous three protocols are combined to simulate the
real-world operational conditions. To be more specific, the
generalization abilities of the face PAD methods are eval-
uated simultaneously across previously unseen illumination
conditions, background scenes, PAIs and input sensors, see
Table II.

In all these protocols, the 55 subjects were divided into
three subject-disjoint subsets for training, development and
testing (20, 15 and 20, respectively). Tables II gives a detailed
information about the video recordings used in the train,
development and test sets of each protocol.

IV. EXPERIMENTS

The experimental results of the baseline method under
the different protocols are presented and discussed in this
section. For the performance evaluation, we selected the
recently standardized ISO/IEC 30107-3 metrics [8]: Attack
Presentation Classification Error Rate (APCER) and Bona

Fide Presentation Classification Error Rate (BPCER). In
principle, these two metrics correspond to the False accep-
tance Rate (FAR) and False Rejection Rate (FRR) commonly
used in the PAD related literature. However, unlike the
FAR and FRR, the APCER and the BPCER take the attack
potential into account in terms of an attacker’s expertise,
resources and motivation in the ”worst case scenario”. To be
more specific, the APCER is computed separately for each
PAI (e.g. print or display) and the overall PAD performance
corresponds to the attack with highest APCER, i.e. the most
successful PAI. This indicates how easy a biometric system
is to fool on average by exploiting its vulnerability (if there
is any).

Since both the APCER and the BPCER depend on the
decision threshold, the development set operates as a separate
validation set for fine tuning the system parameters and
estimating the threshold value to be used on the test set.
To summarize the overall system performance in a single
value, the Average Classification Error Rate (ACER) is used
which is the average of the APCER and the BPCER at the
decision threshold defined by the Equal Error Rate (EER) on
the development set.

As a baseline face PAD method, we chose the color texture
based method [2] as it has shown promising generalization
abilities. In this method, the texture features are extracted
from the color images instead of the gray-scale representation
that has been more commonly used in face PAD. The color
reproduction (gamut) of different PAIs, e.g. prints, displays
and masks, is limited compared to genuine faces. Gamut
mapping functions are typically required in order to preserve
color perception properties across different output devices,
which can alter the (color) texture of the original image. In
general, the gamut mapping algorithms focus on preserving
the spatially local luminance variations in the original images
at the cost of the chrominance information because the
human eye is more sensitive to luminance than to chroma.
The camera used for capturing the targeted face sample
will also lead to imperfect color reproduction compared
to the legitimate sample. Furthermore, other disparities in
facial texture, including printing defects, video artifacts,
noise signatures of display devices and moiré effects, should
be more evident in the original color images compared to



gray-scale images. Thus, the color texture analysis provides
enhanced discrimination between the real and the attack
samples.

In this paper, for each frame, the face region is detected,
cropped and normalized into 64 × 64 pixel images. Since
the studies conducted in [2], [3] depict that the color texture
information extracted from both the HSV and YCbCr color
spaces gives the best results compared to the RGB, or the
gray-scale images, the uniform LBPu2

8,1 (i.e. neighbors=8 and
radius=1) features are extracted from each channel of the
HSV and YCbCr image representations. Then, the resulting
features are concatenated and fed into a Softmax classifier
with a cross-entropy loss function.

A. Protocol I: Effect of the illumination variation

To study the effect of the illumination variation on the
robustness of the face PAD method, we train and tune the
countermeasure model using the video recordings taken in
Session 1 and Session 2, then evaluate its performance on
the videos taken in the third session. Table III shows the
effect of this variation on the color LBP based method. As
we can see, using different sessions to train and evaluate
the countermeasure model results in a degraded performance
compared to the results of the countermeasure model trained
with video recordings from the same session as the evaluation
set (Session 3). The performance degradation from 2.7% to
13.5% indicates that the illumination variation can indeed
pose a big issue for the face PAD methods, especially for
the texture based methods in terms of BPCER.

B. Protocol II: Effect of the PAI variation

The effect of the PAI variation on the generalization
performance is investigated by selecting the spoofing attacks
created with different PAIs in the train and test conditions.
In the train set, we used the print and the video-replay
attacks created with Printer 1 and Display 1. Then, for the
evaluation, we used the attacks created with Printer 2 and
Display 2. To show how much this variation can affect the
generalization performance, we have also reported the results
without any PAI variation (i.e. the attacks in the training,
development and test sets are created using Printer 2 and
Display 2). The results reported in Table IV show that the
variation in the PAI decreases the performance of the baseline
method from 7.2% to 14.2% in terms of ACER. It is worth
highlighting that the baseline method is able to deal with the
PAI variation much better in the case of video-replay attacks
than print attacks as the ACER increases from 7.2% to 9.2%
and from 6.1% to 14.2%, respectively. It is not surprising to
notice that illumination variation increases specifically the
BPCER, while PAI variation has more significant effect on
the APCER.

C. Protocol III: Effect of the camera device variation

To study the effect of the camera device variation, we
compared the results obtained with the LOCO protocol to the
results obtained without any camera device variation (i.e. the
videos in the training, development and test sets are recorded

using the same mobile device). The results are presented
in Table V and Table VI. In addition to reporting the
performance on each mobile phone separately, the average
and the standard deviation over all folds are also computed
in order to summarize the results. From Table V and Table
VI, we can clearly see that sensor interoperability is another
major issue in face PAD that needs further attention.

D. Protocol IV: Effect of illumination, PAI and camera
device variations

This part demonstrates the combined effect of the illu-
mination, PAI and camera device variations on the gener-
alization performance, which gives us a better idea about
the robustness of the developed face PAD methods in more
realistic mobile authentication scenarios. The results reported
in Table VII show that combining the three variations causes
significant degradation in performance. Although the color
texture based method shows relatively good generalization
abilities in the previous experiments (in which only one
variation was taken into account), it fails completely to deal
with the different covariates at the same time, especially in
the case of some mobile phones.

V. CONCLUSIONS

In this paper, we introduced a new mobile face presen-
tation attack detection database. It consists of real access
and attack videos corresponding to 55 subjects. The videos
were recorded using six different mobile devices in three
different illumination conditions and background scenes. For
the spoofing attacks, we considered two types of attacks:
print attacks and video-replay attacks. Both of these attacks
were created using two presentation attack instruments (two
printers and two displays). To evaluate the robustness of
the developed face PAD methods, we designed four proto-
cols. These protocols study the effect of the environmental
conditions (namely illumination and background scene), PAI
and camera device variations on the generalization abilities.
The results of a face PAD method based on color texture
analysis were reported as a baseline. We invite the research
community to consider this new database for the evaluation
of new PAD methods.
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TABLE III: The performance of the of color LBP method under different illumination conditions.

Train Test Dev Test

EER Video-replay Print Overall
APCER BPCER ACER APCER BPCER ACER APCER BPCER ACER

Session 3 Session 3 2.9 2.6 2.4 2.5 2.9 2.4 2.7 2.9 2.4 2.7
Session 1, 2 Session 3 4.7 5.8 21.3 13.5 1.7 21.3 11.5 5.8 21.3 13.5

TABLE IV: The performance of the color LBP method under PAI variation.

Train Test Dev Test

EER Video-replay Print Overall
APCER BPCER ACER APCER BPCER ACER APCER BPCER ACER

Pr 2, D 2 Pr 2, D 2 4.9 10.3 4.0 7.2 8.2 4.0 6.1 10.3 4.0 7.2
Pr 1, D 1 Pr 2, D 2 4.3 11.4 7.0 9.2 21.5 7.0 14.2 21.5 7.0 14.2

TABLE V: The performance of the color LBP method without camera device variation.

Train Test Dev Test

EER Video-replay Print Overall
APCER BPCER ACER APCER BPCER ACER APCER BPCER ACER

P=1 P= 1 4.8 3.9 9.2 6.5 2.7 9.2 6.0 3.9 9.2 6.5
P=2 P= 2 3.8 5.0 3.8 4.4 8.6 3.8 6.2 8.6 3.8 6.2
P=3 P= 3 1.8 4.7 9.0 6.8 0.1 9.0 4.6 4.7 9.0 6.8
P=4 P= 4 7.7 8.9 7.8 8.4 10.3 7.8 9.1 10.3 7.8 9.1
P=5 P= 5 4.2 7.8 3.5 5.6 8.9 3.5 6.2 8.9 3.5 6.2
P=6 P= 6 1.9 4.2 1.8 3.0 3.8 1.8 2.8 4.2 1.8 3.0

Avg± std 4.0 ± 2.2 5.7± 2.1 5.9± 3.2 5.8± 1.9 5.8 ± 4.1 5.9 ± 3.2 5.8 ± 2.1 6.8 ± 2.8 5.9 ± 3.2 6.3 ± 1.9

TABLE VI: The performance of the color LBP method under camera device variation.

Train Test Dev Test

EER Video-replay Print Overall
APCER BPCER ACER APCER BPCER ACER APCER BPCER ACER

P={2,3,4,5,6} P= 1 5.4 5.6 19.1 12.3 2.9 19.1 11.0 5.6 19.1 12.3
P={1,3,4,5,6} P= 2 5.2 7.0 6.2 6.6 17.6 6.2 11.9 17.6 6.2 11.9
P={1,2,4,5,6} P= 3 5.0 7.2 19.9 13.5 3.7 19.9 11.8 7.2 19.9 13.5
P={1,2,3,5,6} P= 4 4.3 15.1 5.8 10.4 12.8 5.8 9.3 15.1 5.8 10.4
P={1,2,3,4,6} P= 5 4.8 6.3 4.9 5.6 8.2 4.9 6.6 8.2 4.9 6.6
P={1,2,3,4,5} P= 6 4.9 15.8 10.4 13.1 25.2 10.4 17.8 25.2 10.4 17.8

Avg± std 4.9 ±0.4 9.5 ±4.6 11.0 ±6.8 10.3 ±3.4 11.7 ±8.6 11.0± 6.8 11.4± 3.7 13.1± 7.6 11.0± 6.8 12.1 ±3.7

TABLE VII: The performance of the color LBP method under illumination, PAI and camera variations

Train Test Dev Test

EER Video-replay Print Overall
APCER BPCER ACER APCER BPCER ACER APCER BPCER ACER

P={2,3,4,5,6} P= 1 5.0 13.4 18.7 16.1 12.0 18.7 15.4 13.4 18.7 16.1
P={1,3,4,5,6} P= 2 6.0 23.0 16.4 19.7 19.6 16.4 18.0 23.0 16.4 19.7
P={1,2,4,5,6} P= 3 5.6 5.8 38.4 22.1 0.0 38.4 19.2 5.8 38.4 22.1
P={1,2,3,5,6} P= 4 5.2 42.7 36.4 39.6 12.4 36.4 24.4 42.7 36.4 39.6
P={1,2,3,4,6} P= 5 5.2 10.0 21.1 15.5 2.9 21.1 12.0 10.0 21.1 15.5
P={1,2,3,4,5} P=6 4.4 64.6 0.3 32.5 100.0 0.3 50.2 100.0 0.3 50.2

Avg± std 5.2 ±0.6 26.6± 22.8 21.9± 14.1 24.2± 9.7 24.5± 37.7 21.9± 14.1 23.2 ± 13.8 32.5± 35.6 21.9± 14.1 27.2± 14.3
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