
Review of Face Presentation Attack Detection

Competitions

Jukka Komulainen, Zinelabidine Boulkenafet and Zahid Akhtar

Abstract Face presentation attack detection has received increasing attention ever

since the vulnerabilities to spoofing have been widely recognized. The state of the art

in software-based face anti-spoofing has been assessed in three international com-

petitions organized in conjunction with major biometrics conferences in 2011, 2013

and 2017, each introducing new challenges to the research community. In this chap-

ter, we present the design and results of the three competitions. The particular focus

is on the latest competition, where the aim was to evaluate the generalization abil-

ities of the proposed algorithms under some real-world variations faced in mobile

scenarios, including previously unseen acquisition conditions, presentation attack

instruments and sensors. We also discuss the lessons learnt from the competitions

and future challenges in the field in general.

1 Introduction

Spoofing (or presentation attacks as defined in the recent ISO/IEC 30107-3 stan-

dard [24]) poses serious security issue to biometric systems in general but face

recognition systems in particular are easy to be deceived using images of the tar-

geted person published in the web or captured from distance. Many works (e.g.,

[14, 30, 35]) have concluded that face biometric systems, even those presenting a
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high recognition performance, are vulnerable to attacks launched with different Pre-

sentation Attack Instruments (PAI), such as prints, displays and wearable 3D masks.

The vulnerability to presentation attacks (PA) is one of the main reasons to the lack

of public confidence in (face) biometrics. Also, face recognition based user verifica-

tion is being increasingly deployed even in high-security level applications, such as

mobile payment services. This has created a necessity for robust solutions to counter

spoofing.

One possible solution is to include a specific Presentation Attack Detection

(PAD) component into a biometric system. PAD (commonly referred to also as anti-

spoofing, spoof detection or liveness detection) aims at automatically differentiating

whether the presented biometric sample originates from a living legitimate subject

or not. PAD schemes can be broadly categorized into two groups: hardware-based

and software-based methods. Hardware-based methods introduce some custom sen-

sor into the biometric system that is designed specifically for capturing specific in-

trinsic differences between a valid living biometric trait and others. Software-based

techniques exploit either only the same data that is used for the actual biometric

purposes or additional data captured with the standard acquisition device.

Ever since the vulnerabilities of face based biometric systems to PAs have been

widely recognized, face PAD has received significant attention in the research com-

munity and remarkable progress has been made. Still, it is hard to tell what are the

best or most promising practices for face PAD, because extensive objective evalu-

ation and comparison of different approaches is challenging. While it is relatively

cheap for an attacker to exploit a known vulnerability of a face authentication system

(a ”golden fake”), such as a realistic 3D mask, manufacturing a huge amount of face

artefacts and then simulating various types of attack scenarios (e.g. use-cases) for

many subjects is extremely time-consuming and expensive. This is true especially

in the case of hardware-based approaches because capturing new sensor-specific

data is always required. Consequently, hardware-based techniques have been usu-

ally evaluated just to demonstrate a proof of concept, which makes direct compari-

son between different systems impossible.

Software-based countermeasures, on the other hand, can be assessed on com-

mon protocol benchmark datasets or, even better, if any new data is collected, it can

be distributed to the research community. The early works in the field of software-

based face PAD were utilizing mainly small proprietary databases for evaluating

the proposed approaches but nowadays there exist several common public bench-

mark datasets, such as [9, 12, 16, 46, 49, 54]. The public databases have been

indispensable tools for the researchers for developing and assessing the proposed

approaches, which has had a huge impact on the amount of papers on data-driven

countermeasures during the recent years. However, even if standard benchmarks are

used, objective evaluation between different methods is not straightforward. First,

the used benchmark datasets may vary across different works. Second, not all the

datasets have unambiguously defined evaluation protocols, for example for training

and tuning the methods, that provide the possibility for fair and unbiased compari-

son between different works.
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Competitions play a key role in advancing the research on face PAD. It is im-

portant to organize collective evaluations regularly in order to assess, or ascertain,

the current state of the art and gain insight on the robustness of different approaches

using a common platform. Also, new more challenging public datasets are often col-

lected and introduced within such collective efforts to the research community for

future development and benchmarking use. The quality of PAIs keeps improving as

technology (i.e., printers and displays) gets cheaper and better, which is another rea-

son why benchmark datasets need to be updated regularly. Open contests are likely

to inspire researchers and engineers beyond the field to participate, and their out-

side the box thinking may lead to new ideas on the problem of face PAD and novel

countermeasures.

In the context of software-based face PAD, three international competitions

[4, 10, 15] have been organized in conjunction with major biometric conferences in

2011, 2013 and 2017, each introducing new challenges to the research community.

The first competition on countermeasures to 2D face spoofing attacks [10] provided

an initial assessment of face PAD by introducing a precisely defined evaluation pro-

tocol and evaluating the performance of the proposed face PAD systems under print

attacks. The second competition on countermeasures to 2D face spoofing attacks

[15] utilized the same evaluation protocol but assessed the effectiveness of the sub-

mitted systems in detecting a variety of attacks, introducing display attacks (digital

photos and video-replays) in addition to print attacks. While the first two contests

considered only known operating conditions, the latest international competition on

face PAD [4] aimed to compare the generalization capabilities of the proposed algo-

rithms under some real-world variations faced in mobile scenarios, including unseen

acquisition conditions, PAIs and input sensors.

This chapter introduces the state of the art in face PAD with particular focus on

the three international competitions. The remainder of the chapter is organised as

follows. First, we will give a brief overview on face PAD approaches proposed in the

literature in Section 2. In Section 3, we will recapitulate the first two international

competitions on face PAD, while Section 4 provides more comprehensive analysis

on the latest competition focusing on generalized face PAD in mobile scenarios.

In Section 5, we will discuss the lessons learnt from the competitions and future

challenges in the field of face PAD in general. Finally, Section 6 summarizes the

chapter, and presents conclusions drawn from the competitions discussed here.

2 Literature review on face PAD methods

There exists no universally accepted taxonomy for the different face PAD ap-

proaches. In this chapter, we categorize the methods into two very broad groups:

hardware-based and software-based methods.

Hardware-based methods are probably the most robust ones for PAD because

the dedicated sensors are able to directly capture or emphasize specific intrinsic

differences between genuine and artificial faces in 3D structure [17, 42] and (multi-
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spectral) reflectance [40, 42, 44, 55] properties. For instance, planar PAI detection

becomes rather trivial if depth information is available [17], whereas near-infrared

(NIR) or thermal cameras are efficient in display attack detection as most of the

displays in consumer electronics emit only visible light. On the other hand, these

kinds of unconventional sensors are usually expensive and not compact, thus not

(yet) available in personal devices, which prevents their wide deployment.

It is rather appealing to perform face PAD by further analyzing only the same data

that is used for face recognition or additional data captured with the standard acqui-

sition device (e.g., challenge-response approach). These kinds of software-based

methods can be broadly divided into active (requiring user collaboration) and pas-

sive approaches. Additional user interaction can be very effectively used for face

PAD because we humans tend to be interactive, whereas a photo or video-replay

attack cannot respond to randomly specified action requirements. Furthermore, it is

very difficult to perform liveness detection or facial 3D structure estimation by re-

lying only on spontaneous facial motion. Challenge-response based methods aim at

performing face PAD detection based on whether the required action (challenge), for

example facial expression [25, 36], mouth movement [11, 25] or head rotation (3D

structure) [20, 34, 48], was observed within a predefined time window (response).

Also, active software-based methods are able to generalize well across different ac-

quisition conditions and attack scenarios but at the cost of usability due to increased

authentication time and system complexity.

Passive software-based methods are preferable for face PAD because they are

faster and less intrusive than active countermeasures. Due to the increasing number

of public benchmark databases, numerous passive software-based approaches have

been proposed for face PAD. In general, passive methods are based on analyzing

different facial properties, such as frequency content [28, 46], texture [2, 12, 17, 27,

32, 53] and quality [18, 21, 23], or motion cues, such as eye blinking [3, 38, 45, 47],

facial expression changes [3, 25, 45, 47], mouth movements [3, 25, 45, 47], or even

color variation due to blood circulation (pulse) [15, 29, 31], to discriminate face

artifacts from genuine ones. Passive software-based methods have shown impressive

results on the publicly available datasets but the preliminary cross-database tests,

such as [19, 48], revealed that the performance is likely to degrade drastically when

operating in unknown conditions.

Recently, the research focus on software-based face PAD has been gradually

moving towards assessing and improving the generalization capabilities of the pro-

posed and existing methods in a cross-database setup instead of operating solely

on single databases. Among hand-crafted feature based approaches, colour texture

analysis [5, 6, 7, 8], image distortion analysis [21, 23, 49], combination of texture

and image quality analysis with interpupillary distance (IPD) based reject option

[39], dynamic spectral domain analysis [41] and pulse detection [29] have been ap-

plied in the context of generalized face PAD but with only moderate success.

The initial studies using deep CNNs have resulted in excellent intra-test perfor-

mance but the cross-database results have still been unsatisfactory [39, 52]. This is

probably due to the fact that the current publicly available datasets may not provide

enough data for training well-known deep neural network architectures from scratch
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or even for fine-tuning pre-trained networks. As a result, the CNN models have been

suffering from overfitting to specific data and learning database-specific information

instead of generalized PAD related representations. In order to improve the gener-

alization of CNNs with limited data, more compact feature representations or novel

methods for cross-domain adaptation are needed. In [33], deep dictionary learning

based formulation was proposed to mitigate the requirement of large amounts of

training data with very promising intra-test results but the generalization capability

was again unsatisfying. In any case, the potential of application-specific learning

needs to be further explored when more comprehensive face PAD databases are

available.

3 First and second competitions on countermeasures to 2D face

spoofing attacks

In this section, we recapitulate the first [10] and second [15] competitions on coun-

termeasures to 2D face spoofing attacks, which were held in conjunction with In-

ternational Joint Conference on Biometrics (IJCB) in 2011 and International Con-

ference on Biometrics (ICB) in 2013, respectively. Both competitions focused on

assessing the stand-alone PAD performance of the proposed algorithms in restricted

acquisition conditions, thus integration with actual face verification stage was not

considered.

In 2011, the research on software-based face PAD was still in its infancy mainly

due to lack of public datasets. Since there were no comparative studies on the effec-

tiveness of different PAD methods under the same data and protocols, the goal of the

first competition on countermeasures to 2D facial spoofing attacks [10] was to pro-

vide a common platform to compare software-based face PAD using a standardized

testing protocol. The performance of different algorithms was evaluated under print

attacks using a unique evaluation method. The used PRINT-ATTACK database [1]

defines a precise protocol for fair and unbiased algorithm evaluation as it provides a

fixed development set to calibrate the countermeasures, while the actual test data is

used solely for reporting the final results.

While the first competition [10] provided an initial assessment of face PAD, the

2013 edition of the competition on countermeasures to 2D face spoofing attacks

[15] aimed at consolidating the recent advances and trends in the state of the art

by evaluating the effectiveness of the proposed algorithms in detecting a variety of

attacks. The contest was carried out using the same protocol on the newly collected

video REPLAY-ATTACK database [12], introducing display attacks (digital photos

and video-replays) in addition to print attacks.

Both competitions were open to all academic and industrial institutions. A no-

ticeable increase in the number of participants between the two competitions can

be seen. Particularly, six different competitors from universities participated in the

first contest, while eight different teams participated in the second competition. The
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Table 1 Names and affiliations of the participating systems in the first competition on counter-

measures to 2D facial spoofing attacks

Algorithm name Affiliations

AMILAB Ambient Intelligence Laboratory, Italy

CASIA Chinese Academy of Sciences, China

IDIAP Idiap Research Institute, Switzerland

SIANI Universidad de Las Palmas de Gran Canaria, Spain

UNICAMP University of Campinas, Brazil

UOULU University of Oulu, Finland

Table 2 Names and affiliations of the participating systems in the second competition on counter-

measures to 2D face spoofing attacks

Algorithm name Affiliations

CASIA Chinese Academy of Sciences, China

IGD Fraunhofer Institute for Computer Graphics, Germany

MaskDown

Idiap Research Institute, Switzerland

University of Oulu, Finland

University of Campinas, Brazil

LNMIIT LNM Institute of Information Technology, India

MUVIS Tampere University of Technology, Finland

PRA Lab University of Cagliari, Italy

ATVS Universidad Autonoma de Madrid, Spain

UNICAMP University of Campinas, Brazil

affiliation and corresponding algorithm name of the participating teams for the two

competitions are summarized in Table 1 and Table 2.

In the following, we summarize the design and main results of the first and sec-

ond competitions on countermeasures to 2D face spoofing attacks. The reader can

refer to [10] and [15] for more detailed information on the competitions.

3.1 Datasets

The first face PAD competition [10] utilized PRINT-ATTACK [1] database consist-

ing of 50 different subjects. The real access and attack videos were captured with a

320×240 pixels (QVGA) resolution camera of a MacBook laptop. The database in-

cludes 200 videos of real accesses and 200 videos of print attack attempts. The PAs

were launched by presenting hard copies of high resolution photographs printed on

A4 papers with a Triumph-Adler DCC 2520 color laser printer. The videos were

recorded under controlled (uniform background) and adverse (non-uniform back-

ground with day-light illumination) conditions.

The second competition on face PAD [15] was conducted using an extension

of the PRINT-ATTACK database, named as REPLAY-ATTACK database [12]. The

database consists of video recordings of real accesses and attack attempts corre-

sponding to 50 clients. The videos were acquired using the built-in camera of a
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Fig. 1 Sample images from the PRINT-ATTACK [1] and REPLAY-ATTACK [12] databases. Top

and bottom rows correspond to controlled and adverse conditions, respectively. From left to right

columns: real accesses, print, mobile phone and tablet attacks.

MacBook Air 13 inch laptop under controlled and adverse conditions. Under the

same conditions, high resolution pictures and videos were taken for each person

using a Canon PowerShot SX150 IS camera and an iPhone 3GS camera, later to

be used for generating the attacks. Three different attacks were considered: i) print

attacks (i.e., high resolution pictures were printed on A4 paper and displayed to

the camera); ii) mobile attacks (i.e., attacks were performed by displaying pictures

and videos on the iPhone 3GS screen); iii) high definition attacks (i.e., the pictures

and the videos were displayed on an iPad screen with 1024× 768 pixels resolu-

tion). Moreover, attacks were launched with hand-held and fixed support modes for

each PAI. Figure 1 shows sample images of real and fake faces from both PRINT-

ATTACK and REPLAY-ATTACK databases.

3.2 Performance evaluation protocol and metrics

The databases used in both competition editions are divided into train, development

and test sets with no overlap between them (in terms of subjects or samples). During

the system development phase of the first competition, the participants were given

access to the labelled videos of the training and the development sets that were used

to train and calibrate the devised face PAD methods. In the evaluation phase, the per-

formances of the developed systems were reported on anonymized and unlabelled

test video files. In the course of the second competition, the participants had ac-

cess to all subsets because the competition was conducted on the publicly available

REPLAY-ATTACK database. The final test data consisted of anonymized videos of

100 successive frames cut from the original test set videos starting from a random

time.

The first and second competitions considered a face PAD method to be prone

to two types of errors: either a real access attempt is rejected (false rejection) or

a PA is accepted (false acceptance). Both competitions employed Half Total Error



8 Jukka Komulainen, Zinelabidine Boulkenafet and Zahid Akhtar

Table 3 Overview and performance (in %) of the algorithms proposed in the first face PAD com-

petition (F stands for feature-level and S for score-level fusion)

Team Features Fusion
Development Test

FAR FRR HTER FAR FRR HTER

AMILAB Texture, motion & liveness S 0.00 0.00 0.00 0.00 1.25 0.63

CASIA Texture, motion S 1.67 1.67 1.67 0.00 0.00 0.00

IDIAP Texture - 0.00 0.00 0.00 0.00 0.00 0.00

SIANI Motion - 1.67 1.67 1.67 0.00 21.25 10.63

UNICAMP Texture, motion & liveness F 1.67 1.67 1.67 1.25 0.00 0.63

UOULU Texture - 0.00 0.00 0.00 0.00 0.00 0.00

Rate (HTER) as principal performance measure metric, which is the average of false

rejection rate (FRR) and false acceptance rate (FAR) at a given threshold τ:

HT ER(τ) =
FAR(τ)+FRR(τ)

2
(1)

For evaluating the proposed approaches, the participants were asked to provide

two files containing a score value for each video in the development and test sets,

respectively. The HTER is measured on the test set using the threshold τ corre-

sponding to the equal error rate (EER) operating point on the development set.

3.3 Results and discussion

The algorithms proposed in the first competition on face PAD and the corresponding

performances are summarized in Table 3. The participated teams used either single

or multiple types of visual cues among motion, texture and liveness. Almost every

system managed to obtain nearly perfect performance on both development and test

sets of the PRINT-ATTACK database. The methods using facial texture analysis

dominated because the photo attacks in the competition dataset suffered from ob-

vious print quality defects. Particularly, two teams, IDIAP and UOULU, achieved

zero percent error rates on both development and test sets relying solely on local

binary pattern (LBP) [37] based texture analysis, while CASIA achieved perfect

classification rates on the test set using combination of texture and motion analy-

sis. Assuming that the attack videos usually are noisier than those of real videos, the

texture analysis component in CASIA’s system is based on estimating the difference

in noise variance between the real and attack videos using first order Haar wavelet

decomposition. Since the print attacks are launched with fixed and hand-held print-

outs with incorporated background (see Figure 1), the motion analysis component

measures the amount of non-rigid facial motion and face-background motion corre-

lation.

Table 4 gives an overview of the algorithms proposed within the second compe-

tition on face PAD and the corresponding performance figures for both development



Review of Face Presentation Attack Detection Competitions 9

Table 4 Overview and performance (in %) of the algorithms proposed in the second face PAD

competition (F stands for feature-level and S for score-level fusion)

Team Features Fusion
Development Test

FAR FRR HTER FAR FRR HTER

CASIA Texture & motion F 0.00 0.00 0.00 0.00 0.00 0.00

IGD Liveness - 5.00 8.33 6.67 17.00 1.25 9.13

MaskDown Texture & motion S 1.00 0.00 0.50 0.00 5.00 2.50

LNMIIT Texture & motion F 0.00 0.00 0.00 0.00 0.00 0.00

MUVIS Texture F 0.00 0.00 0.00 0.00 2.50 1.25

PRA Lab Texture S 0.00 0.00 0.00 0.00 2.50 1.25

ATVS Texture - 1.67 0.00 0.83 2.75 21.25 12.00

Unicamp Texture - 13.00 6.67 9.83 12.50 18.75 15.62

and test sets. The participating teams developed face PAD methods based on texture,

frequency, image quality, motion and liveness (pulse) features. Again, the use of tex-

ture was popular as seven out of eight teams adopted some sort of texture analysis

in the proposed systems. More importantly, since the attack scenarios in the second

competition were more diverse and challenging, a common approach was combin-

ing several complementary concepts together (i.e., information fusion at feature or

score level). The category of the used features did not influence the choice of fusion

strategy. The best-performing systems were based on feature-level fusion but it is

more likely that the high level of robustness is largely based on the feature design

rather than the used fusion approach.

From Table 4, it can be seen that the two PAD techniques proposed by CA-

SIA and LNMIIT achieved perfect discrimination between the real accesses and the

spoofing attacks (i.e., 0.00% error rates on the development and test sets). Both of

these top-performing algorithms employ a hybrid scheme combining the features

of both texture and motion-based methods. Specifically, the used facial texture de-

scriptions are based on LBP, while motion analysis components again measure the

amount of non-rigid facial motion and face-background motion consistency as the

new display attacks are inherently similar to the ”scenic” print attacks of the previ-

ous competition (see Figure 1). The results on the competition dataset suggested that

face PAD methods relying on a single cue are not able to detect all types of attacks,

and the generalizing capability of the hybrid approaches is higher but with high

computational cost. On the other hand, MUVIS and PRA Lab managed to achieve

excellent performance on the development and test sets using solely texture analy-

sis. However, it is worth pointing out that both systems compute the texture features

over whole video frame (i.e., including background region), thus the methods are

severely overfitting to the scene context information that matches across the train,

development and test data. All in all, the astonishing results also on the REPLAY-

ATTACK dataset conclude that more challenging configurations are needed before

the research on face PAD can reach the next level.
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4 Competition on generalized face presentation attack detection

in mobile scenarios

The vulnerabilities of face based biometric systems to PAs have been widely rec-

ognized but still we lack generalized software-based PAD methods performing ro-

bustly in practical (mobile) authentication scenarios. In recent years, many face PAD

methods have been proposed and remarkable results have been reported on the exist-

ing benchmark datasets. For instance, as seen in Section 3, several methods achieved

perfect error rates in the first [10] and second [15] face PAD competitions. More re-

cent studies, such as [5, 8, 19, 49, 52], have revealed that the existing methods are

not able to generalize well in more realistic scenarios, thus software-based face PAD

is still an unsolved problem in unconstrained operating conditions.

Focused large scale evaluations on the generalization of face PAD had not been

conducted or organized after the issue was first pointed out by de Freitas Pereira

et al. [19] in 2013. To address this issue, we organized a competition on mobile

face PAD [4] in conjunction with IJCB 2017 to assess the generalization abilities of

state-of-the-art algorithms under some real-world variations, including unseen input

sensors, PAIs, and illumination conditions. In the following, we will introduce the

design and results of this competition in detail.

4.1 Participants

The competition was open to all academic and industrial institutions. The partici-

pants were required register for the competition and sign the end user license agree-

ment (EULA) of the used OULU-NPU database [9] before obtaining the data for de-

veloping the PAD algorithms. Over 50 organizations registered for the competition

and 13 teams submitted their systems in the end for evaluation. The affiliation and

corresponding algorithm name of the participating teams are summarized in Table

5. Compared with the previous competitions, the number of participants increased

significantly from six and eight in the first and second competitions, respectively.

Moreover, in the previous competitions, all the participated teams were from aca-

demic institutes and universities, whereas in this competition, we had registered the

participation of three companies as well, which highlights the importance of the

topic for both academia and industry.

4.2 Dataset

The competition was carried out on the recently published1 OULU-NPU face pre-

sentation attack database [9]. The dataset and evaluation protocols were designed

1 The dataset was not yet released at the time of the competition.
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Table 5 Names and affiliations of the participating systems

Algorithm name Affiliations

Baseline University of Oulu, Finland

MBLPQ University of Ouargla, Algeria

PML

University of Biskra, Algeria

University of the Basque Country, Spain

University of Valenciennes, France

Massy HNU Changsha University of Science and Technology

Hunan University, China

MFT-FAS Indian Institute of Technology Indore, India

GRADIANT
Galician Research and Development Center

in Advanced Telecommunications, Spain

Idiap
Ecole Polytechnique Federale de Lausanne

Idiap Research Institute, Switzerland

VSS Vologda State University, Russia

SZUCVI Shenzhen University, China

MixedFasNet FUJITSU laboratories LTD, Japan

NWPU Northwestern Polytechnical University, China

HKBU Hong Kong Baptist University, China

Recod University of Campinas, Brazil

CPqD CPqD, Brazil

particularly for evaluating the generalization of face PAD methods in more realistic

mobile authentication scenarios by considering three covariates: unknown environ-

mental conditions (namely illumination and background scene), PAIs and acquisi-

tion devices, separately and at once.

The OULU-NPU database consists of 4950 short video sequences of real access

and attack attempts corresponding to 55 subjects (15 female and 40 male). The real

access attempts were recorded in three different sessions separated by a time interval

of one week. During each session, a different illumination condition and background

scene were considered (see Figure 2):

• Session 1: The recordings were taken in an open-plan office where the electric

light was switched on, the windows blinds were open, and the windows were

located behind the subjects.

• Session 2: The recordings were taken in a meeting room where the electric light

was the only source of illumination.

• Session 3: The recordings were taken in a small office where the electronic light

was switched on, the windows blinds were open, and the windows were located

in front of the subjects.

During each session, the subjects recorded the videos of themselves using the

front facing cameras of the mobile devices. In order to simulate realistic mobile

authentication scenarios, the video length was limited to five seconds. Furthermore,

the subjects were asked to use the device naturally while ensuring that the whole

face is visible through the whole video sequence.
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(a) Session 1 (b) Session 2 (c) Session 3

Fig. 2 Sample images of a real subject highlighting the illumination conditions across the three

different scenarios.

(a) Phone 1 (b) Phone 2 (c) Phone 3 (d) Phone 4 (e) Phone 5 (f) Phone 6

Fig. 3 Sample images showing the image quality of the different camera devices.

Six smartphones with high-quality front-facing cameras in the price range from

e250 to e600 were used for the data collection:

• Samsung Galaxy S6 edge with 5 MP frontal camera (Phone 1).

• HTC Desire EYE with 13 MP frontal camera (Phone 2).

• MEIZU X5 with 5 MP frontal camera (Phone 3).

• ASUS Zenfone Selfie with 13 MP frontal camera (Phone 4).

• Sony XPERIA C5 Ultra Dual with 13 MP frontal camera (Phone 5).

• OPPO N3 with 16 MP rotating camera (Phone 6).

The videos were recorded at Full HD resolution (i.e., 1920× 1080) using the

same camera software2 installed on each device. Even though the nominal camera

resolution of some mobile devices is the same, such as Phone 2, Phone 4 and Phone

5 (13 MP), significant differences can be observed in the quality of the resulting

videos as demonstrated in Figure 3.

During each of the three sessions, a high-resolution photo and a video of each

user was captured using the back camera of the Phone 1 capable of taking 16 MP

still images and Full HD videos. These high resolution photos and videos were then

2 http://opencamera.sourceforge.net/
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(a) Print 1 (b) Print 2 (c) Display 1 (d) Display 2

Fig. 4 Samples of print and display attacks taken with the front camera of Sony XPERIA C5 Ultra

Dual.

used to create the PAs. The attack types considered in this database are print and

video-replay attacks:

• Print attacks: The high resolution photos were printed on A3 glossy paper using

two different printers: a Canon imagePRESS C6011 (Printer 1) and a Canon

PIXMA iX6550 (Printer 2).

• Video-replay attacks: The high-resolution videos were replayed on two different

display devices: a 19” Dell UltraSharp 1905FP display with 1280× 1024 reso-

lution (Display 1) and an early 2015 Macbook 13” laptop with Retina display of

2560×1600 resolution (Display 2).

The print and video-replay attacks were then recorded using the front-facing

cameras of the six mobile phones. While capturing the print attacks, the facial prints

were held by the operator and captured with stationary capturing devices in order to

maximize the image quality but still introduce some noticeable motion in the print

attacks. In contrast, when recording the video-replay attacks both of the capturing

devices and PAIs were stationary. Furthermore, we paid special attention that the

background scene of the attacks matched that of the real accesses during each ses-

sion and that the attack videos did not include the bezels of the screens or borders

of the prints. Figure 4 shows samples of the attacks captured using the Phone 5.

4.3 Performance evaluation protocol and metrics

During the system development phase of two months, the participants were given

access to the labelled videos of the training and the development sets that were used

to train and tune the devised face PAD methods. In addition to the provided training

set, the participants were allowed to use external data to train their algorithms. In

the evaluation phase of two weeks, the performances of the developed systems were
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Table 6 The detailed information about the video recordings in the train, development and test

sets of each protocol (P stands for print and D for display attack)

Protocol Subset Session Phones Subjects Attacks Real / attack videos

Protocol I

Train 1,2 6 1-20 P 1,2; D 1,2 240 / 960

Dev 1,2 6 21-35 P 1,2; D 1,2 180 / 720

Test 3 6 36-55 P 1,2; D 1,2 120 / 480

Protocol II

Train 1,2,3 6 1-20 P 1; D 1 360 / 720

Dev 1,2,3 6 21-35 P 1; D 1 270 / 540

Test 1,2,3 6 36-55 P 2; D 2 360 / 720

Protocol III

Train 1,2,3 5 1-20 P 1,2; D 1,2 300 / 1200

Dev 1,2,3 5 21-35 P 1,2; D 1,2 225 / 900

Test 1,2,3 1 36-55 P 1,2; D 1,2 60 / 240

Protocol IV

Train 1,2 5 1-20 P 1; D 1 200 / 400

Dev 1,2 5 21-35 P 1; D 1 150 / 300

Test 3 1 36-55 P 2; D 2 20 / 40

reported on anonymized and unlabelled test video files. To assess the generalization

of the developed face PAD methods, four protocols have been used:

Protocol I: This protocol is designed to evaluate the generalization of the face

PAD methods under previously unseen environmental conditions, namely illumi-

nation and background scene. As the database is recorded in three sessions with

different illumination condition and location, the train, development and evaluation

sets are constructed using video recordings taken in different sessions.

Protocol II: This protocol is designed to evaluate the effect of attacks created

with different printers or displays on the performance of the face PAD methods as

they may suffer from new kinds of artifacts. The effect of attack variation is assessed

by introducing previously unseen print and video-replay attacks in the test set.

Protocol III: One of the critical issues in face PAD and image classification in

general is sensor interoperability. To study the effect of the input camera variation,

a Leave One Camera Out (LOCO) protocol is used. In each iteration, the real and

the attack videos recorded with five smartphones are used to train and tune the algo-

rithms, and the generalization of the models is assessed using the videos recorded

with the remaining smartphone.

Protocol IV: In the most challenging protocol, all above three factors are consid-

ered simultaneously and generalization of face PAD methods are evaluated across

previously unseen environmental conditions, attacks and sensors.

Table 6 gives detailed information about the video recordings used in the train,

development and test sets of each test scenario. For every protocol, the participants

were asked to provide separate score files for the development and test sets contain-

ing a single score for each video.

For the performance evaluation, we selected the recently standardized ISO/IEC

30107-3 metrics [24], Attack Presentation Classification Error Rate (APCER) and

Bona Fide Presentation Classification Error Rate (BPCER):

APCERPAI =
1

NPAI

NPAI

∑
i=1

(1−Resi) (2)
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BPCER =
∑

NBF
i=1 Resi

NBF

(3)

where, NPAI , is the number of the attack presentations for the given PAI, NBF is

the total number of the bona fide presentations. Resi takes the value 1 if the ith

presentation is classified as an attack presentation and 0 if classified as bona fide

presentation. These two metrics correspond to the False Acceptance Rate (FAR)

and False Rejection Rate (FRR) commonly used in the PAD related literature. How-

ever, APCERPAI is computed separately for each PAI (e.g., print or display) and the

overall PAD performance corresponds to the attack with the highest APCER (i.e.,

the ”worst case scenario”).

To summarize the overall system performance in a single value, the Average

Classification Error Rate (ACER) is used, which is the average of the APCER and

the BPCER at the decision threshold defined by the Equal Error Rate (EER) on the

development set:

ACER =
max

PAI=1...S
(APCERPAI)+BPCER

2
(4)

where S is the number of the PAIs. In Protocols III and IV, these measures (i.e.,

APCER, BPCER and ACER) are computed separately for each mobile phone, and

the average and standard deviation are taken over the folds to summarize the results.

Since the attack potential of the PAIs may vary across the different folds, the overall

APCER does not necessarily correspond to the highest mean APCERPAI .

4.4 Baseline

In addition to the training and development data, the participants were given the

source code3 of the baseline face PAD method that could be freely improved or

used as it is in the final systems. The colour texture based method [5] was as the

baseline because it has shown promising generalization abilities. In this method,

the texture features are extracted from the colour images instead of the gray-scale

representation that has been more commonly used in face PAD, for example in [17,

27, 32, 53]. The key idea behind colour texture based face PAD is that an image of

an artificial face is actually an image of a face which passes through two different

camera systems and a printing system or a display device, thus it can be referred to

in fact as a recaptured image. As a consequence, the observed artificial face image is

likely to suffer from different kinds of quality issues, such as printing defects, video

artifacts, PAI dependent (local) colour variations and limited colour reproduction

(gamut), that can be captured by analyzing the texture content of both luminance

and chrominance channels.

The steps of the baseline method are the following. First, the face is detected,

cropped and normalized into 64×64 pixels. Then, the RGB face image is converted

3 The source code for baseline can be downloaded along with the OULU-NPU database.
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Table 7 Categorization of the proposed systems based on hand-crafted, learned and hybrid features

Category Teams

Hand-crafted features
Baseline, MBLPQ, PML, Massy HNU,

MFT-FAS, GRADIANT, Idiap

Learned features VSS, SZCVI, MixedFASNet

Hybrid features NWPU, HKBU, Recod, CPqD

into HSV and YCbCr colour spaces. The local binary pattern (LBP) texture features

[37] are extracted from each channel of the colour spaces. The resulting feature

vectors are concatenated into an enhanced feature vector which is fed into a Softmax

classifier. The final score for each video is computed by averaging the output scores

of ten random frames.

4.5 Results and discussion

In this competition, typical ”liveness detection” was not adopted as none of the

submitted systems is explicitly aiming at detecting physiological signs of life, such

as eye blinking, facial expression changes and mouth movements. Instead, every

proposed face PAD algorithm relies on one or more types of feature representations

extracted from the face and/or the background regions. The used descriptors can be

categorized into three groups (see Table 7): hand-crafted, learned and hybrid (fusion

of hand-crafted and learned). The performances of the submitted systems under the

four test protocols are reported in Tables 8, 9, 10 and 11.

It appears that the analysis of mere grayscale or even RGB images does not result

in particularly good generalization. In the case of hand-crafted features, every algo-

rithm is based on the recently proposed colour texture analysis [5] in which RGB

images are converted into HSV and/or YCbCr colour spaces prior feature extrac-

tion. The only well-generalizing feature learning based method, MixedFASNet, uses

HSV images as input, whereas the networks operating on gray-scale or RGB im-

ages do not generalize well. On the other hand, it is worth mentioning that VSS and

SZCVI architectures consist only of five convolutional layers, whereas the Mixed-

FASNet, consisting of over 30 layers, is much deeper. The best performing hybrid

methods, Recod and CPqD, fuse the scores of their deep learning based method and

the provided baseline in order to increase the generalization capabilities. Since only

the scores of hybrid systems were provided, the robustness of the proposed fine-

tuned CNN models operating on RGB images remains unclear. Among the methods

solely based on RGB image analysis, HKBU fusing IDA, LBP and deep features is

the only one that generalizes fairly well across the four protocols.

In general, the submitted systems process each (selected) frame of a video se-

quence independently then the final score for a given video is obtained by averag-

ing the resulting scores of individual frames. None of the deep learning or hybrid

methods exploited temporal variations but in the case of hand-crafted features two
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Table 8 The performance (%) of the proposed methods under different illumination and location

conditions (Protocol I)

Methods

Dev Test

EER
Display Print Overall

APCER APCER APCER BPCER ACER

GRADIANT extra 0.7 7.1 3.8 7.1 5.8 6.5

CPqD 0.6 1.3 2.9 2.9 10.8 6.9

GRADIANT 1.1 0.0 1.3 1.3 12.5 6.9

Recod 2.2 3.3 0.8 3.3 13.3 8.3

MixedFASNet 1.3 0.0 0.0 0.0 17.5 8.8

PML 0.6 7.5 11.3 11.3 9.2 10.2

Baseline 4.4 5.0 1.3 5.0 20.8 12.9

Massy HNU 1.1 5.4 3.3 5.4 20.8 13.1

HKBU 4.3 9.6 7.1 9.6 18.3 14.0

NWPU 0.0 8.8 7.5 8.8 21.7 15.2

MFT-FAS 2.2 0.4 3.3 3.3 28.3 15.8

MBLPQ 2.2 31.7 44.2 44.2 3.3 23.8

Idiap 5.6 9.6 13.3 13.3 40.0 26.7

VSS 12.2 20.0 12.1 20.0 41.7 30.8

SZUCVI 16.7 11.3 0.0 11.3 65.0 38.1

VSS extra 24.0 9.6 11.3 11.3 73.3 42.3

Table 9 The performance (%) of the proposed methods under novel attacks (Protocol II)

Methods

Dev Test

EER
Display Print Overall

APCER APCER APCER BPCER ACER

GRADIANT 0.9 1.7 3.1 3.1 1.9 2.5

GRADIANT extra 0.7 6.9 1.1 6.9 2.5 4.7

MixedFASNet 1.3 6.4 9.7 9.7 2.5 6.1

SZUCVI 4.4 3.9 3.3 3.9 9.4 6.7

MFT-FAS 2.2 10.0 11.1 11.1 2.8 6.9

PML 0.9 11.4 9.4 11.4 3.9 7.6

CPqD 2.2 9.2 14.7 14.7 3.6 9.2

HKBU 4.6 13.9 12.5 13.9 5.6 9.7

Recod 3.7 13.3 15.8 15.8 4.2 10.0

MBLPQ 1.9 5.6 19.7 19.7 6.1 12.9

Baseline 4.1 15.6 22.5 22.5 6.7 14.6

Massy HNU 1.3 16.1 26.1 26.1 3.9 15.0

Idiap 8.7 21.7 7.5 21.7 11.1 16.4

NWPU 0.0 12.5 5.8 12.5 26.7 19.6

VSS 14.8 25.3 13.9 25.3 23.9 24.6

VSS extra 23.3 36.1 33.9 36.1 33.1 34.6

different temporal aggregation approaches were proposed for encoding the dynamic

information within a video sequence, for example motion. MBLPQ and PML aver-

aged the feature vectors over the sampled frames, whereas GRADIANT and MFT-

FAS map the temporal variations into a single image prior feature extraction [4]. The
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Table 10 The performance (%) of the proposed methods under input camera variations (Protocol

III)

Methods

Dev Test

EER
Display Print Overall

APCER APCER APCER BPCER ACER

GRADIANT 0.9±0.4 1.0±1.7 2.6±3.9 2.6±3.9 5.0±5.3 3.8±2.4

GRADIANT extra 0.7±0.2 1.4±1.9 1.4±2.6 2.4±2.8 5.6±4.3 4.0±1.9

MixedFASNet 1.4±0.5 1.7±3.3 5.3±6.7 5.3±6.7 7.8±5.5 6.5±4.6

CPqD 0.9±0.4 4.4±3.4 5.0±6.1 6.8±5.6 8.1±6.4 7.4±3.3

Recod 2.9±0.7 4.2±3.8 8.6±14.3 10.1±13.9 8.9±9.3 9.5±6.7

MFT-FAS 0.8±0.4 0.8±0.9 10.8±18.1 10.8±18.1 9.4±12.8 10.1±9.9

Baseline 3.9±0.7 9.3±4.3 11.8±10.8 14.2±9.2 8.6±5.9 11.4±4.6

HKBU 3.8±0.3 7.9±5.8 9.9±12.3 12.8±11.0 11.4±9.0 12.1±6.5

SZUCVI 7.0±1.6 10.0±8.3 7.5±9.5 12.1±10.6 16.1±8.0 14.1±4.4

PML 1.1±0.3 8.2±12.5 15.3±22.1 15.7±21.8 15.8±15.4 15.8±15.1

Massy HNU 1.9±0.6 5.8±5.4 19.0±26.7 19.3±26.5 14.2±13.9 16.7±10.9

MBLPQ 2.3±0.6 5.8±5.8 12.9±4.1 12.9±4.1 21.9±22.4 17.4±10.3

NWPU 0.0±0.0 1.9±0.7 1.9±3.3 3.2±2.6 33.9±10.3 18.5±4.4

Idiap 7.9±1.9 8.3±3.0 9.3±10.0 12.9±8.2 26.9±24.4 19.9±11.8

VSS 14.6±0.8 21.4±7.7 13.8±7.0 21.4±7.7 25.3±9.6 23.3±2.3

VSS extra 25.9±1.7 25.0±11.4 32.2±27.9 40.3±22.2 35.3±27.4 37.8±6.8

Table 11 The performance (%) of the proposed methods under environmental, attack and camera

device variations (Protocol IV)

Methods

Dev Test

EER
Display Print Overall

APCER APCER APCER BPCER ACER

GRADIANT 1.1±0.3 0.0±0.0 5.0±4.5 5.0±4.5 15.0±7.1 10.0±5.0

GRADIANT extra 1.1±0.3 27.5±24.2 5.8±4.9 27.5±24.2 3.3±4.1 15.4±11.8

Massy HNU 1.0±0.4 20.0±17.6 26.7±37.5 35.8±35.3 8.3±4.1 22.1±17.6

CPqD 2.2±1.7 16.7±16.0 24.2±39.4 32.5±37.5 11.7±12.1 22.1±20.8

Recod 3.7±0.7 20.0±19.5 23.3±40.0 35.0±37.5 10.0±4.5 22.5±18.2

MFT-FAS 1.6±0.7 0.0±0.0 12.5±12.9 12.5±12.9 33.3±23.6 22.9±8.3

MixedFASNet 2.8±1.1 10.0±7.7 4.2±4.9 10.0±7.7 35.8±26.7 22.9±15.2

Baseline 4.7±0.6 19.2±17.4 22.5±38.3 29.2±37.5 23.3±13.3 26.3±16.9

HKBU 5.0±0.7 16.7±24.8 21.7±36.7 33.3±37.9 27.5±20.4 30.4±20.8

VSS 11.8±0.8 21.7±8.2 9.2±5.8 21.7±8.2 44.2±11.1 32.9±5.8

MBLPQ 3.6±0.7 35.0±25.5 45.0±25.9 49.2±27.8 24.2±27.8 36.7±4.7

NWPU 0.0±0.0 30.8±7.4 6.7±11.7 30.8±7.4 44.2±23.3 37.5±9.4

PML 0.8±0.3 59.2±24.2 38.3±41.7 61.7±26.4 13.3±13.7 37.5±14.1

SZUCVI 9.1±1.6 0.0±0.0 0.8±2.0 0.8±2.0 80.8±28.5 40.8±13.5

Idiap 6.8±0.8 26.7±35.2 13.3±8.2 33.3±30.4 54.2±12.0 43.8±20.4

VSS extra 21.1±2.7 13.3±17.2 15.8±21.3 25.8±20.8 70.0±22.8 47.9±12.1

approach by GRADIANT turned out to be particularly successful as the achieved

performance was simply the best and most consistent across all the four protocols.

In this competition, the simple colour texture based face descriptions were very

powerful compared to deep learning based methods, of which the impressive results
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achieved by GRADIANT are a good example. On the other hand, the current (pub-

lic) datasets may not probably provide enough data for training CNNs from scratch

or even fine-tuning the pre-trained models to their full potential. NWPU extracted

LBP features from convolutional layers in order to reduce the number of trainable

parameters, thus avoiding the need for enormous training sets. Unfortunately, the

method did not generalize well on the evaluation set.

Few teams used additional public and/or proprietary datasets for training and

tuning their algorithms. The VSS team augmented the subset of real subjects with

CASIA-WebFace and collected their own attack samples. The usefulness of these

external datasets remains unclear because their grayscale image analysis based face

PAD method did not perform well. Recod used publicly available datasets for fine

tuning the pre-trained network but the resulting generalization was comparable to

similar method, CPqD, that did not use any extra-data. GRADIANT submitted two

systems with and without external training data. Improved BPCER was obtained in

unseen acquisition conditions but APCER was much better in general when using

only the provided OULU-NPU training data.

Since unseen attack scenarios will be definitely experienced in operation, the

problem of PAD could be easily ideally solved using one-class classifiers for mod-

eling the variations of the only known class (i.e., bona-fide). Idiap method is based

on the idea of anomaly detection but it lacked generalization mainly because the

individual grayscale image analysis based methods were performing poorly4. Thus,

one-class modeling would be worth investigating when combined with more robust

feature representations.

Several general observations can be made based on the results of protocols I, II

and III assessing the generalization of the PAD method across unseen conditions

(i.e., acquisition conditions, attack types and sensors, separately):

Protocol I: In general, a significant increase in BPCER can be noticed com-

pared to APCER when the PAD systems are operating in new acquisition conditions.

The reason behind this may be in the data collection principles of the OULU-NPU

dataset. Legitimate users have to be verified in various conditions, while attackers

aim probably at high-quality attack presentation in order to increase the chance of

successfully fooling a face biometric system. The bona-fide samples were collected

in three sessions with different illumination. In contrast, the bona-fide data corre-

sponding to each session was used to create face artifacts but the attacks themselves

were always launched with short standoff and captured in the same laboratory setup.

Thus, the intrinsic properties of the attacks do not vary too much across the different

sessions.

Protocol II: In most cases, previously unseen attack leads into dramatic increase

in APCER, which is expected as only one PAI of each print and video-replay attacks

is provided for training and tuning purposes.

Protocol III: It is also interesting to notice that the standard deviation of APCER

across different sensors is much larger in the case of print attacks compared to video-

4 Idiap submitted also the scores of the individual sub-systems.
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replay attacks, which suggests that the nature of print attacks seems to vary more

although both attack types can be detected equally well on average.

Based on the results of the protocol IV, it is much harder to make general con-

clusions because all the factors are combined and different approaches seem to be

more robust to different covariates. The last protocol reveals, however, that none of

the methods is able to achieve a reasonable trade-off between usability and security.

For instance, in the case of GRADIANT, either the APCER or BPCER of the two

systems is too high for practical applications. Nevertheless, the overall performance

of GRADIANT, MixedFASNET, CPqD and Recod is very impressive considering

the challenging conditions of the competition and the OULU-NPU dataset.

5 Discussion

All the three competitions on face PAD were very successful in consolidating and

benchmarking the current state of the art. In the following, we provide general obser-

vations and further discussion on the lessons learnt and potential future challenges.

5.1 General observations

It can be noticed that the used datasets and evaluation protocols, and also the recent

advances in the state of the art reflect the face PAD scheme trends seen in the differ-

ent contests. The algorithms proposed in the first and second competitions on coun-

termeasures to 2D face spoofing attacks exploited the evident visual cues that we

humans can observe in the videos of the PRINT-ATTACK and REPLAY-ATTACK

databases, including localized facial movements, global motion, face-background

motion correlation, print quality defects and other degradations in facial texture

quality. While simple texture analysis was sufficient for capturing the evident print-

ing artefacts in the PRINT-ATTACK database, fusion of multiple visual cues was

needed for achieving robust performance under variety of attacks of the REPLAY-

ATTACK database. The perfect error rates of the best-performing PAD schemes

in homogeneous development and test conditions indicated that more challenging

configurations were needed for future benchmarks.

In the competition on generalized face PAD, typical liveness detection and mo-

tion analysis were hardly used. In general, the proposed solutions relied on one or

more types of feature representations extracted from the face and/or background re-

gions using hand-crafted and/or learned descriptors, which is not surprising consid-

ering the recent trends in (face) PAD. Colour texture analysis had shown promising

generalization capabilities in preliminary studies [5, 6, 7]. This explains why most

teams proposed new facial colour texture representations or used the provided base-

line as a complementary PAD method. Although it was nice to see a diverse set of

deep learning based systems and further improved versions of the provided baseline
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method, it was bit disappointing that entirely novel generalized face PAD solutions

were not proposed. While the best-performing approaches were able to generalize

remarkably well under the individual unknown conditions, no major breakthrough in

generalized face PAD was achieved as the none of the methods was able to achieve

satisfying performance under the most challenging test protocol, Protocol IV.

5.2 Lessons learnt

The competitions have given valuable lessons on designing databases and test pro-

tocols, and competitions in general. In the second competition on countermeasures

to 2D face spoofing attacks, two teams managed to achieve perfect discrimination

on the REPLAY-ATTACK database, and consequently PRINT-ATTACK database,

by computing texture features over the whole video frame. The two background

conditions in the REPLAY-ATTACK dataset are the same across the training, de-

velopment and test sets and the corresponding scene is incorporated in the attack

presentations (see Figure 1). Thus, also the differences in background scene texture

between the real access and attack videos match between the development and test

data, while only the facial texture is unknown due to previously unseen subjects. It

is also worth mentioning that the original video encoder of the REPLAY-ATTACK

dataset was not used for creating the randomly sampled test videos. The resulting

video encoding artefacts and noise patterns did not match between the development

and test phases, which might explain the increase in FRR for the methods relying

largely on static and dynamic texture analysis.

In the third competition, focusing on generalization in face PAD, the time be-

tween the release of test data and submission of results was two weeks. The labelled

test set of OULU-NPU database was not yet publicly available during the competi-

tion. However, we humans are apt in differentiating attack videos from real ones and

the test subset of the OULU-NPU database contains still only 1800 videos. There-

fore, it was feasible to label the anonymized and unlabelled test data by hand for

”data peeking”, that is calibrating, or even training, the systems on the test data.

This kind of cheating could be prevented by hiding some ”anchor” videos from the

development set (with randomized file names) in the evaluation data and releasing

the augmented test set once the development set scores have been submitted (fixed),

as done in the BTAS 2016 Speaker Anti-spoofing Competition [26]. The scores of

the anchor videos could be used for checking whether the scores for the develop-

ment and test sets have been generated by the same system.

An even more serious concern with the third competition is that the data provided

for system development contained all variations in attacks, input sensors and acqui-

sition conditions that the generalization was tested for. While only a specific subset

defined in the test protocols (see Table 6) was supposed to be used for training, no

measures were taken to prevent cheating by training and calibrating a single system

on all data (containing also the unknown scenarios) and using it for reporting the

scores for the according development and test sets of the individual protocols. In this
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case, only the test subjects would be unknown to the system. Since only the integrity

of the participants was trusted, the overall conclusions should be handled with care.

However, it is worth pointing out that none of the submitted algorithms managed

to achieve satisfying PAD performance on the OULU-NPU dataset even though

cheating was possible. Although promising generalization was achieved across the

different protocols, the best results are far from perfect, unlike in the previous com-

petitions.

The best solution to prevent ”data peeking” or cheating in general would be to

keep the test data, including unknown scenarios, inaccessible during algorithm de-

velopment phase and to conduct independent (third-party) evaluations, in which the

organizers run the provided executables or source codes of the submitted systems on

the competition data. The results of the iris liveness detection competitions (LivDet-

Iris) [50, 51] have shown already that the resulting performances can be far from

satisfactory even for the winning methods, thus probably reflecting better the true

generalization capabilities. It is worth highlighting that any later comparison to this

kind of competition results should be treated with caution because it is impossible to

reproduce the ”blind” evaluation conditions any more and, consequently, to achieve

a fair comparison.

Over 50 organizations registered for the competition on generalized face PAD

but only 13 teams made a final submission. Among the remaining 37 registered,

there were also many companies. In general, the industrial participants should be

encouraged to make an ”anonymous” submission, for example if the results might

be unsatisfactory or details of the used algorithm cannot be revealed, as the results

can still provide extremely useful additional information on the performance of the

state of the art. For instance, in the LivDet-Iris 2017 competition [50], the best-

performing algorithm was submitted anonymously.

5.3 Future challenges

The test cases in the OULU-NPU database measuring the generalization across the

different covariates are still very limited. The video sequences have been captured

with six different mobile devices but the attacks consists of only two different print

attacks and display attacks and the acquisition conditions are quite controlled and

restricted to three indoor office locations. Also, the variability in user demograph-

ics could be increased. The results of the third competition suggest that among the

three tested covariates previously unseen acquisition conditions cause the most sig-

nificant degradation in performance due to increase in BPCER, whereas unknown

attacks have huge impact in APCER, especially in the case of print attacks. This

observation is consistent with cross-dataset experiments conducted in other studies

(e.g., [8, 16, 49]). While there is still plenty of room for improvement in the results

obtained on the OULU-NPU dataset, more comprehensive datasets for investigating

face presentation attack detection ”in the wild” will be eventually needed.



Review of Face Presentation Attack Detection Competitions 23

In general, the evaluation of biometric systems under presentations attacks can

be conducted either at algorithm or system level [22]. In the first case, the robust-

ness of the PAD modules is evaluated independently of the performance of the rest

of the system, for instance, the face recognition stage. System level evaluation con-

siders the performance of the biometric system as a whole. The advantage of system

based evaluations is that it provides better insight into the overall robustness of the

whole system to spoofing attacks, and how a proposed PAD technique affects the

overall system accuracy (in terms of FRR). All three competitions have considered

only stand-alone face PAD. Therefore, a possible future study would be combining

match scores with both PAD and quality measures to improve the resilience of face

verification systems [13, 43]. So far, the competitions have assessed the proposed

PAD algorithms based on single liveness score values that have been assigned to

each video after processing all or some of its frames. It would be also useful to mea-

sure the complexity, speed and latency of the participating systems, for example by

computing the error rates over time.

Due to the recent advances in technology and vulnerabilities to spoofing, man-

ufacturers, such as Microsoft, Apple and Samsung, have introduced new sensors

(e.g., active NIR and depth cameras) for face verification purposes on personal de-

vices. The dedicated imaging solutions are better capable of capturing the intrinsic

differences between bona-fide samples and face artefacts than conventional cameras

(hardware-based PAD). Since the new sensors are emerging in consumer devices,

algorithm-based evaluations on sensor-specific data would be valuable addition in

upcoming competitions. Alternatively, system-based evaluations of complete bio-

metric systems with novel sensors and PAD modules could be assessed on the spot,

as conducted already in LivDet-Iris 2013 [51], for instance. Naturally, this kind of

arrangement requires careful competition design and execution, let alone significant

efforts compared to algorithm level evaluation.

6 Conclusions

Competitions play a vital role in consolidating the recent trends and assessing the

state of the art in face PAD. This chapter introduced the design and results of the

three international competitions on software-based face PAD. These contests have

been important milestones in advancing the research on face PAD to the next level

as each competition has offered new challenges to the research community and re-

sulted in novel countermeasures and new insight. The number of participants has

grown in each successive competition, which indicates the increasing interest and

importance of the research problem. The first and second competitions had six and

eight participants from academic institutes, while the latest contest had 13 entries

including three companies.

The first two competitions provided initial assessments of the state of the art

by introducing a precisely defined test protocol and evaluating the performance of

the systems under print and display attacks in homogeneous conditions. The best-
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performing teams achieved perfect results in the first two competitions, because the

test data did not introduce conditions (e.g., sensors, illumination or attacks) not seen

during the algorithm development phase. Despite significant progress in the field,

existing face PAD methods have shown lack of generalization in real-world operat-

ing conditions. Therefore, the latest contest considered a more unconstrained setup

than in previous competitions, and aimed at measuring the generalization capabil-

ities of the proposed algorithms under some real-world variations faced in mobile

scenarios, including unknown acquisition conditions, PAIs and sensors. While the

best results were promising, no major breakthrough in generalized face PAD was

achieved even though the use of external training data was allowed.

Although none of the systems proposed in the latest competition managed to

achieve satisfying PAD performance on the recent OULU-NPU database, more

comprehensive datasets on presentation attack detection are still needed, especially

considering the needs of data-hungry deep learning algorithms. So far, the compe-

titions have focused only on stand-alone PAD, thus joint-operation with face veri-

fication would be worth investigating in future. Since new imaging solutions, such

as NIR and depth cameras, are already emerging in consumer devices, it would be

important to include these kinds of sensors in the upcoming benchmark datasets and

competitions.
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