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Abstract Face presentation attack detection (PAD) has received increasing
attention ever since the vulnerabilities to spoofing have been widely recog-
nized. The state of the art in unimodal and multi-modal face anti-spoofing
has been assessed in eight international competitions organized in conjunc-
tion with major biometrics and computer vision conferences in 2011, 2013,
2017, 2019, 2020 and 2021, each introducing new challenges to the research
community. In this chapter, we present the design and results of the five
latest competitions from 2019 until 2021. The first two challenges aimed at
evaluating the effectiveness of face PAD in multi-modal setup introducing
near-infrared (NIR) and depth modalities in addition to colour camera data,
while the latest three competitions focused on evaluating domain and attack
type generalization abilities of face PAD algorithms operating on conven-
tional colour images and videos. We also discuss the lessons learnt from the
competitions and future challenges in the field in general.
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1 Introduction

Presentation attacks (PAs) [32], commonly referred to also as spoofing, pose a
serious security issue to biometric systems. Automatic face recognition (AFR)
systems, in particular, are easy to be deceived, e.g., using images of the tar-
geted person published on the web or captured from distance. Many works,
such as [53], have concluded that face recognition systems are vulnerable to
sensor-level attacks launched with different presentation attack instruments
(PAI), such as prints, displays, and wearable 3D masks. The vulnerability
to PAs is one of the main reasons for the lack of public confidence in AFR
systems, especially in high-security applications, such as mobile payment ser-
vices, which has created a necessity for robust solutions to counter spoofing.

One possible solution is to include a dedicated face presentation attack de-
tection (PAD) component into AFR systems. Face PAD, commonly referred
to also as face anti-spoofing (FAS) or liveness detection, aims at automati-
cally differentiating whether the presented face biometric sample originates
from a bona fide subject or an artefact. Based on the used imaging modali-
ties, face PAD schemes can be broadly categorized into unimodal and multi-
modal based methods. Unimodal face PAD systems usually exploit efficient
visual features extracted from conventional colour (RGB) camera data for
binary classification (i.e., bona fide vs. attack), thus they can be easily de-
ployed in most practical AFR scenarios but with limited accuracy. In contrast,
multi-modal methods [71] introduce some additional imaging modalities (e.g.,
depth, near-infrared (NIR), or thermal infrared sensor data) that can cap-
ture specific intrinsic differences between the bona fide and attack samples
but with extra hardware costs. For example, the depth maps obtained from
2D printout and display face artefacts using 3D sensors usually have flat and
close-to-zero distributions in facial regions.

Despite the recent progress in deep learning based face anti-spoofing meth-
ods [52, 84] with powerful representation capacity, it is difficult to tell what
are the best or most promising feature learning based approaches for gener-
alized face PAD. Along with the development in manufacturing technologies,
it has become even cheaper for an attacker to exploit known vulnerabilities of
AFR systems with different kinds of face artefacts, such as a realistic 3D mask
made of plaster. Simulating AFR scenarios with various attacks, environmen-
tal conditions, acquisition devices and subjects is extremely time-consuming
and expensive, but the domain shifts caused by such covariates have a signif-
icant impact on the face PAD performance. These issues have been already
explored with several public unimodal datasets, such as [3, 7, 49, 74, 95]. How-
ever, these benchmarks have been yet rather small-scale in terms of number
of subjects, samples and AFR scenarios and, consequently, the corresponding
evaluation protocols have been too limited (e.g., in terms of unknown PAs
and acquisition conditions in the test set). Moreover, there have been no pub-
lic benchmarks and protocols for evaluating multi-modal face PAD schemes
until recently.
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Competitions play a key role in advancing the research on face PAD and
provide valuable insights for the entire face recognition community. It is im-
portant to organize collective evaluations regularly in order to assess, or as-
certain, the current state of the art and gain insight on the robustness of
different approaches using a common platform. Also, new, more challeng-
ing public datasets are often collected and introduced within such collective
efforts to the research community for future development and benchmark-
ing use. The quality of PAIs keeps improving as technology (e.g., 2D/3D
printers and displays) gets cheaper and better, which is another reason why
benchmark datasets need to be updated regularly. Open contests are likely
to inspire researchers and engineers beyond the field to participate, and their
outside the box thinking may lead to new ideas on the problem of face PAD
and novel countermeasures.

In the context of face PAD, altogether eight international competitions [45,
1, 5, 8, 43, 46, 58, 94] have been organized in conjunction with major bio-
metrics and computer vision conferences in 2011, 2013, 2017, 2019, 2020 and
2021, each introducing new challenges to the research community. In this
chapter, we focus on analysing the design and results of the five latest com-
petitions [45, 43, 46, 58, 94] from 2019 until 2021, while an extensive review
of the first three competitions [1, 5, 8] can be found in [38]. The key features
of the five most recent face PAD competitions are summarized in Table 1.

Table 1 Summary of the recent five face PAD competitions organized from 2019 until
2021.

Competition ‘ Modality ‘ Highlight ‘ Limitation
CVPR2019 challenge [45] [RGB, depth, NIR First multi-modal face PAD challenge With only print attacks
CVPR2020 challenge [43] [RGB, depth, NIR Cross-ethnicity & cross-PAI testing Testing with only print and mask PAs
ECCV2020 challenge [94] RGB Largest dataset with rich (43) attributes Limited domain shift in testing set
1JCB2021 LivDet-Face [58] RGB Unseen testing set with rich (9) PAIs No training set provided
ICCV2021 challenge [46] RGB Largest 3D mask dataset & open set protocol| Limited (only three) mask types

The multi-modal face anti-spoofing challenge organized in 2019 (referred
to as CVPR2019 challenge) [45] provided an initial assessment of multi-
modal countermeasures to various kinds of print attacks by introducing a
precisely defined test protocol for evaluating the performance of the face
PAD solutions with three modalities (i.e., colour, depth and NIR). In 2020,
the cross-ethnicity face anti-spoofing challenge (referred to as CVPR2020
challenge) [43] extended the previous CVPR2019 challenge with several new
factors (e.g., unseen ethnicities and 3D mask attacks), and having separate
competition tracks for unimodal (colour) and multi-modal (colour, depth
and NIR) data. While the datasets used in these first two contests contained
a limited number of subjects and samples, the CelebA-Spoof Challenge in
2020 (referred to as ECCV2020 challenge) [94] provided an assessment on
the performance of face PAD methods on the largest publicly available uni-
modal (colour) benchmark dataset. The LivDet Face 2021 liveness detec-
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tion competition (referred to as IJCB2021 LivDet-Face) [58] focused on the
challenging domain generalization issues and unseen attacks, with separate
competition tracks for methods using colour image and video data. In or-
der to bridge the gap between competitions (i.e., laboratory conditions) and
real-world application scenarios, the test data was practically concealed as
only few samples of attacks were provided. Finally, to further evaluate the
performance of face PAD approaches under challenging 3D mask attacks,
the 3D high-fidelity mask attack detection challenge in 2021 (referred to as
ICCV2021 challenge) [46] was conducted on the largest publicly available 3D
mask dataset with a novel open-set evaluation protocol.

The remainder of the chapter is organized as follows. First, we will recapit-
ulate the organization, solutions as well as results of the five most recent face
PAD competitions in Section 2. Then, in Section 3, we will discuss the lessons
learnt from the competitions and future challenges in the field of face PAD in
general. Finally, Section 4 summarizes the chapter, and presents conclusions
drawn from the competitions discussed here.

2 Review of Recent Face PAD Competitions

We begin our review by first introducing two multi-modal face PAD competi-
tions, namely CVPR2019 and CVPR2020 challenges, in Sections 2.1 and 2.2,
respectively, where the latter one included also a competition track for uni-
modal (colour) data. Then, three latest unimodal (colour) face PAD competi-
tions, namely ECCV2020, IJCB2021 LivDet-Face and ICCV2021 challenges
are reviewed in remaining Sections 2.3, 2.4 and 2.5, respectively.

2.1 Multi-Modal Face Anti-spoofing Attack Detection
Challenge (CVPR2019)

The first three face PAD competitions [38] organized in conjunction with In-
ternational Joint Conference on Biometrics (IJCB) 2011, International Con-
ference on Biometrics (ICB) 2013 and IJCB2017 focused on photo (i.e., both
printed and digital) and video-replay attack detection relying on small-scale
datasets (i.e., PRINT-ATTACK [5], REPLAY-ATTACK [8], OULU-NPU [1])
for training, tuning and testing. To be more specific, these datasets have an
insufficient number of subjects (< 60) and data samples (< 6,000 videos)
compared with databases used in the field of image classification, e.g., Ima-
geNet [14] and face recognition, e.g., CASIA-WebFace [80], which severely
limits the development and testing of data-driven deep model based ap-
proaches for generalized face PAD. Also, due to the lack of variation in
the face PAD datasets, the deep models have been suffering from overfit-
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ting and learning database-specific information instead of generalized feature
representations capturing the disparities in the inherent fidelity characteris-
tics between bona fide samples and different kinds of face artefacts. Another
missing feature in previous face PAD competitions has been the availabil-
ity of multi-modal facial information in addition to conventional visible light
colour (RGB) data. This kind of extended range imaging information might
be very helpful for developing more robust face PAD methods for practical
real-world AFR applications. In order to address the limitations of previous
competitions, the Chalearn multi-modal face anti-spoofing attack detection
challenge! [45] was held in conjunction with the Conference on Computer Vi-
sion and Pattern Recognition (CVPR) in 2019. The competition was based on
a newly collected large-scale multi-modal face anti-spoofing dataset, namely
CASIA-SURF [90, 91], which consists of 1,000 subjects and 21,000 video
clips in three modalities (colour, depth and NIR). The goal of this competi-
tion was to push the research progress in AFR applications, where plenty of
data and multiple modalities can be considered to be available.

Table 2 Teams and affiliations listed in the final ranking of the CVPR2019 chal-
lenge [45].

| Ranking | Team Name | Affiliation |

1 VisionLabs VisionLabs

2 ReadSense ReadSense

3 Feather Intel

4 Hahahaha Megvii

5 MAC-adv-group Xiamen University

6 ZKBH Biomhope

7 VisionMiracle VisonMarcle

8 GradiantResearch Gradiant

9 Vipl-bpoic ICT, CAS

10 Massyhnu Hunan University

11 AT4all BUPT

12 Guillaume Idiap Research Institute
invited team Vivi Baidu

The CVPR2019 challenge was run in the CodaLab? platform and consisted
of two phases: development phase (December 22, 2018 — March 6, 2019) and
final phase (March 6, 2019 — March 10, 2019). More than 300 academic and
industrial institutions worldwide participated in this challenge, and finally 13
teams entered into the final stage. A summary with the names and affiliations
of these teams is presented in Table 2. Compared with the previous compe-
titions [1, 5, 8], the majority of the final participants (10 out of 13) of this
competition came from the industry, which indicates the increased need for
reliable liveness detection products in daily life applications. Furthermore,

! https://sites.google.com/qq.com/face-anti-spoofing/welcome/challengecvpr2019
2 https://competitions.codalab.org/competitions/20853
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Fig. 1 Samples of a live face and six kinds of print attacks from the CASIA-SURF
dataset [90, 91].

one highlight of the CVPR2019 challenge is that the three top-performing
teams (VisionLabs?, ReadSense?*, and Feather®) released their source code in
GitHub and summarized their approaches in the related CVPR, workshop pa-
pers [56, 64, 72, 89], enhancing the fairness, transparency, and reproducibility
of the solutions so that they can be easily facilitated by the face recognition
community.

2.1.1 Dataset

The CASIA-SURF dataset [90, 91] was the largest face PAD database in
terms of number of subjects and videos at the time of the CVPR2019
challenge. Each sample of the dataset was associated with three modalities
(colour, depth and NIR) captured using an Intel RealSense SR300 camera.
Samples from each subject consist of one live video clip and one video clip of
each six different attack presentations. A total number of 1,000 subjects and
21,000 videos were captured to build the dataset. Representative samples of
bona fide and attack samples across the three modalities are illustrated in
Fig. 1.

The CASIA-SURF dataset considers six different kinds of print attacks,
where a person is holding;:

e Attack 1: A flat face photo from which the eye regions are cut.

e Attack 2: A curved face photo from which the eye regions are cut.

e Attack 3: A flat face photo from which the eye and nose regions are
cut.

3 https://github.com/AlexanderParkin/Chalearn_liveness_challenge
4 https://github.com/SeuTao/CVPR19-Face-Anti-spoofing
5 https://github.com/SoftwareGift/FeatherNets_Face-Anti-spoofing-Attack-Detection-Challenge-CVPR2019
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e Attack 4: A curved face photo from which the eye and nose regions are
cut.

e Attack 5: A flat face photo from which eyes, nose, and mouth regions
are cut.

e Attack 6: A curved face photo from which the eye, nose, and mouth
regions have been cut.

The samples in the CASIA-SURF dataset were pre-processed for the com-
petition as follows: 1) the dataset is split in three subject-disjoint partitions:
train, validation, and test sets, with 300, 100 and 600 subjects, respectively,
when the corresponding number of videos is 6,300 (2,100 per modality), 2,100
(700 per modality) and 12,600 (4,200 per modality), 2) only every tenth frame
from each video was selected to reduce the size of the competition dataset,
which resulted in 148K, 48K and 295K frames for the three subsets, respec-
tively, and 3) to mitigate the effect of pre-processing methods (e.g., face
detection and alignment) and limit the problem of face PAD to the actual fa-
cial information, the background information was masked out pixel-wise from
original data, thus only pre-cropped aligned facial images were provided for
each modality.

2.1.2 Evaluation Protocol and Metrics

In order to focus on the generalization to unknown attacks, the organizers
provided only a part of the CASIA-SURF dataset for training, i.e., for each
subject only a subset of the PA types was available. Hence, the participants
were given about 30K frames for training and 9.6K frames for validation.
Note that the attacks in the test set differ from the attacks in the training
set, therefore a successful model should avoid intra-attack overfitting, which
was a common issue in the earlier face PAD competitions. The challenge
comprised development and final stages. The detailed protocols are described
as follows.

Protocol in development phase: (December 22, 2018 — March 6, 2019).
During the development phase, the participants had access to the labelled
training and unlabelled validation samples. Training data included the bona
fide samples and three kinds of PAs (4, 5, 6), whereas the validation data
consisted of bona fide samples and three other types of PAs (1, 2, 3). The
participants were able to submit predictions on the validation partition and
receive immediate response via the leaderboard using the CodaLab platform.
As it can be observed from Fig. 1, the attacks (4, 5, 6) in the validation
set differ in appearance (partial cuts in eyes, nose, and mouth regions) from
attacks (1, 2, 3), which made the task of face PAD challenging.

Protocol in final phase: (March 6, 2019 — March 10, 2019). During
the final phase, the labels for the validation subset were made available to
the participants, so that they could leverage the additional labelled data
for tuning to alleviate the domain gap between different attack types. The
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participants had to make predictions on the unlabelled test partition and
upload their solutions to the CodaLab platform. The considered test set was
formed from bona fide samples and three kinds of PAs (1, 2, 3). The final
ranking of the participants was determined based on the performance of the
submitted systems on the test set. To be eligible for prizes, the top solutions
had to release their source code under a licence of their choice and provide
a fact sheet describing their solution. All codes would be re-run and verified
by the organizing team after the final submission phase. For the sake of
reproducibility and fairness, the final ranking of the teams was based on the
verified results.

Evaluation metrics: The recently standardized ISO/IEC 30107-3% [32]
metrics, including Attack Presentation Classification Error Rate (APCER),
Bona Fide Presentation Classification Error Rate (BPCER) and Average
Classification Error Rate (ACER) were adopted as part of the used eval-
uation criteria. They can be formulated as:

APCER=FP/(FP+TN), (1)
BPCER=FN/(FN+TP), (2)
ACER = (APCER+ BPCER) /2, 3)

where TP, FP, TN and FN correspond to true positive, false positive, true
negative and false negative, respectively. APCER and BPCER are used to
measure the error rates of attack or bona fide samples, respectively. Similarly
to the common metrics in AFR systems, the Receiver Operating Characteris-
tic (ROC) curve was also considered for examining a suitable operating point
trade-off in the False Positive Rate (FPR) and True Positive Rate (TPR) re-
garding the requirements of real-world biometric applications. Finally, the
operating point of TPRQFPR=10"% was selected as the leading evaluation
measure for the CVPR2019 challenge, while the ACER was used as an addi-
tional evaluation criterion.

2.1.3 Results and Discussion

In this subsection, we summarize all the face PAD solutions reaching the
final stage in terms of method keywords, backbone models, pretraining data,
modalities, fusion schemes, and loss functions. Finally, the overall results are
analysed and discussed.

Summary of the participating solutions: Table 3 summarizes the face
PAD solutions of the 13 participating teams and the baseline method. Dif-
ferent from the previous three competitions (7.e., IJCB2011 [5], ICB2013 [8]
and IJCB2017 [1]), none of the final teams used traditional face PAD meth-
ods, such as hand-crafted image quality/texture descriptors [2], and liveness

6 https://www.iso.org/standard/67381.html
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Table 3 Summary of the face PAD methods for all participating teams and baseline
method [45]. 'SE’ denotes Squeeze-and-Excitation [26] and 'BCE’ denotes binary cross-

entropy.
- s Fusion scheme
Team Method Backbone model | Pre-training data |Modalities .
and loss function
CASIA-WebFace [80] .
VisionLabs [56] Fine-tuning ResNet34 [26] AFAD-Lite [54] ]?eG]t?)h SioEreFlfllslzs(i)gn
stontabs Ensembling Resnet50 [26] MSCeleb1M [24] i
X NIR BCE loss
Asian dataset [96]
Bag-of-local RGB SE Fusion
ReadSense [64] features SE-ResNeXt [78] No Depth Score fusion
Ensembling NIR BCE loss
] . Fishnet [66] Depth Score fusion
Feather [89)] Ensembling |11 i1eNetv2 [62) No NIR BCE loss
Hahahaha Depth only ResNeXt [78] Imagenet [14] Depth BCE loss
Feature RGB Feature fusion
MAC-adv-group . ResNet34 No Depth
fusion BCE loss
NIR
. RGB .
ZKBH Regression ResNet18 No Depth Data fusion
model Regression loss
NIR
Modified
VisionMiracle Shufflenet-V2 |Shufflenet-V2 [51] No Depth BCE loss
Depth only
RGB .
Baseline [91, 90] Feature ResNet18 No Depth SE fusion
fusion BCE loss
NIR
CradiantR | Deep metric I tion [67] VGGFace2 [4] §G?h Logistic regression
radiantiiesearc learning neeption GRAD-GPAD [10] 1\?%{ ensemble
Attention RGB Data fusion
Vipl-bpoic [72] mechanism [76] ResNet18 No Depth Center loss [75]
NIR BCE loss
9 softmax RGB Colour
Massyhnu Ensembling classifiers No Depth [information fusion
NIR BCE loss
Al4all Depth only VGG16 [65] No Depth BCE loss
Multi-Channel .
Guillaume CNN LightCNN [77] Yes Depth Data fusion
No RGB
Dense RGB Feature fusion
Vivi cross-modal- DenseNet [97] Yes Depth Score fusion
attention model NIR BCE loss

cues like eye blinking, facial expression changes and mouth movements [55].
Instead, all the submitted face PAD solutions relied on data-driven model-
based feature extractors, such as ResNet [26] and VGG16 [65]. Furthermore,
most of the approaches were multi-modal, combining two or three modal-
ities, while only three teams (Hahaha, VisionMiracle and Al4all) relied on
unimodal (depth-based) PAD solution. It can be seen from the last column in
Table 3 that several kinds of multi-modal fusion strategies (e.g., input-level
data fusion, feature-level Squeeze-and-Excitation (SE) [26] fusion and score-
level fusion) were used. Regarding the use of pre-training data, two teams (Vi-
sionLabs and GradiantResearch) leveraged pre-trained models from related
face analysis tasks (e.g., face recognition models on CASTA-WebFace [80] and
face PAD models on GRAD-GPAD [10]) to mitigate the issues with overfit-
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ting. It is worth to note that all three top-performing solutions (VisionLabs,
ReadSense and Feather) adopted ensemble strategy to aggregate the predic-
tions from multiple variant models.

Table 4 Results and rankings of the stage teams [45] at the final stage. The best results
are bolded. (x denotes Vivi that is affiliated with the sponsor and did not participate in
the final ranking).

Team Name FP | FN |APCER(%)|BPCER(%)|ACER(%)|TPR(%)QFPR=10e-4
VisionLabs 3 | 27 0.0074 0.1546 0.0810 99.8739
ReadSense 77T 1 0.1912 0.0057 0.0985 99.8052
Feather 48 | 53 0.1192 0.1392 0.1292 98.1441
Hahahaha 55 [ 214 0.1366 1.2257 0.6812 93.1550
MAC-adv-group | 825 | 30 2.0495 0.1718 1.1107 89.5579
ZKBH 396 | 35 0.9838 0.2004 0.5921 87.6618
VisionMiracle | 119 | 83 0.2956 0.4754 0.3855 87.2094
GradiantResearch| 787 | 250 1.9551 1.4320 1.6873 63.5493
Baseline 1542|177 3.8308 1.0138 2.4223 56.8381
Vipl-bpoic 1580 985 3.9252 5.6421 4.7836 39.5520
Massyhnu 219 | 621 0.5440 3.5571 2.0505 29.2990
Al4all 273 | 100 0.6782 0.5728 0.6255 25.0601
Guillaume 5252[1869| 13.0477 10.7056 11.8767 0.1595
Vivi® 7 |15 0.0173 0.0859 0.0516 99.8282

Result analysis: The results and ROC curves of the participating teams
on the test data are shown in Table 4 and Fig. 2, respectively. It can be ob-
served that the winning team (VisionLabs) achieved TPR=99.8739%QFPR=10"%,
and the FN = 27 and FP = 3 on the test set. In fact, different application
scenarios have different requirements for each indicator. For example, to meet
the higher security needs of an access control system, the FP is required to
be as small as possible. With respect to this criterion, VisionLabs performed
very well as only three attack samples were misclassified as bona fide. In con-
trast, a small FN value is crucial from usability point of view, where the team
ReadSense achieved the best result (FN=1) due to the effectiveness of local
patch inputs. In overall, the first eight teams were performing better than the
baseline method [90, 91] in terms of FP and TPRQ@FPR=10"*, indicating
the valuable outputs and insightful solutions of this challenge.

As shown in Table 4, the results of the three top-performing teams on the
test set were clearly superior compared with the other teams. By combin-
ing Table 3 with Table 4, we can conclude that ensemble learning performed
more robustly compared to single-model based solutions under the same con-
ditions. The ROC curves of all the participating teams are illustrated in
Fig. 2. It can be seen that three teams (i.e., VisionLabs, ReadSense, and
Vivi) were significantly better than other teams on the test set. For instance,
the TPRQFPR=10"* values of these three teams are relatively close to each
other and superior compared to the other teams. The characteristics of the
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Fig. 2 ROC curves of the teams on test set at the final stage [45].

three modalities are different, as the colour data is rich in details, the depth
data is sensitive to the distance, while the NIR data captures better the face-
specific skin reflectance properties, for instance. Therefore, the teams Vivi
and Vipl-bpoic introduced attention mechanisms into the face PAD task,
enforcing the models to focus on different informative regions among three
modalities. Similarly, the team Feather used a cascaded architecture with two
subnetworks, where two modalities of the CASIA-SURF dataset (i.e., depth
and NIR data) were examined subsequently by each network. Some teams
considered also facial landmarks (i.e., Hahahaha) and colour space conver-
sions (¢.e., MAC-adv-group and Massyhnu) for PAD. Instead of conventional
binary classification based PAD model, the team ZKBH constructed a re-
gression model to supervise the model to learn local cues in the eye regions.
In order to generalize better to unseen attacks, the team GradiantResearch
reformulated face PAD as an anomaly detection problem using deep metric
learning.

Discussion: Although most of the proposed solutions achieved superior
performance compared with the provided multi-modal SE fusion based base-
line, there were still some limitations in the CVPR2019 challenge. Originally,
the main research question was to explore new efficient multi-modal fusion
schemes for combining the colour, depth and NIR modalities. However, no
novel or otherwise insightful multi-modal fusion strategies were proposed in
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the end. Most of the teams applied very simple data-level and score-level
fusion in a greedy search manner, which is likely to fail when evaluating
a method on an unknown multi-modal dataset. Furthermore, the two top-
performing teams adopted the feature-level SE fusion strategy directly from
the baseline method, which again was not very fruitful from the multi-modal
challenge point of view. Many of the top-performing solutions exploited an
ensemble of multiple models to boost the performance. However, while push-
ing the efficiency, model ensembling also increases the complexity of the whole
solution, which is not practical in real-world conditions, especially consider-
ing the limitations of mobile and embedded platforms. Finally, some solutions
were considerably inspired by the human-observed priors in the CASIA-SURF
dataset (e.g., the apparent discrepancy in the eye and nose regions between
bona fide and attack samples), which were easily fooled by the cut paper at-
tacks with similar shapes in these regions. Based on the aforementioned ob-
servations, the problem of designing more generalized multi-modal face PAD
solutions capturing specific intrinsic fidelity characteristics between bona fide
and attack samples remains an open issue.

2.2 Cross-FEthnicity Face Anti-spoofing Recognition
Challenge (CVPR2020)

The racial bias in face PAD methods was not explicitly explored until it was
demonstrated in [44] that the PAD performance of deep models can vary
widely on test samples with unseen ethnicity. To alleviate the racial bias and
ensure the reliability of face PAD methods among different populations, the
CASTA-SURF Cross-ethnicity Face Anti-Spoofing (CeFA) dataset [44] along
with the Chalearn Cross-ethnicity Face Anti-Spoofing Recognition Chal-
lenge [43] were established.

The cross-ethnicity face PAD challenge comprised unimodal (i.e., colour)
and multi-modal (¢.e., colour, depth and NIR) competition tracks, which were
collocated with the Workshop on Media Forensics” at CVPR2020. Similarly
to the previous multi-modal challenge, both the unimodal® and multi-modal®
tracks were run simultaneously using the CodaLab platform. The competition
attracted 340 teams in the development stage, with 11 and eight teams fi-
nally entering the actual evaluation stage for the unimodal and multi-modal
face PAD tracks, respectively. A summary of the names and affiliations of
teams that entered the final stage as well as their final rankings are shown in
Tables 5 and 6 for the unimodal and multi-modal tracks, respectively. From
the tables, it can be seen that most participants came from industrial insti-

" https://sites.google.com/view/wmediaforensics2020/home
8 https://competitions.codalab.org/competitions/22151
9 https://competitions.codalab.org/competitions/22036
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tutions, indicating the increasing need for reliable and robust PAD systems
in practical AFR applications. Interestingly, the team VisionLabs was not
only the winner of the unimodal track of the CVPR2020 challenge, but also
the winner of the earlier multi-modal CVPR2019 challenge [45]. In addition,
the team BOBO from University of Oulu (the authors’ team) proposed novel
Central Difference Convolution (CDC) [86, 87] and contrastive depth loss
(CDL) [73] methods for feature learning, achieving the first and second place
in multi-modal and unimodal tracks, respectively.

2.2.1 Dataset

The CASIA-SURF CeFA [44] was the largest face anti-spoofing dataset at the
time of the CVPR2020 competition, covering three ethnicities (i.e., Africa,
East Asia and Central Asia), three modalities (i.e., colour, depth and NIR),
1,607 subjects, and four different of PA types (i.e., prints, video-replays, 3D
print and silica gel masks). The multi-modal videos were captured using an
Intel RealSense SR300 camera with resolution of 1280 x 720 pixels for each
video frame at 30 frames per second. The data was pre-processed in similar

Table 5 Names, affiliations and rankings of the participating systems in the unimodal
track [43].

|Ranking| Team Name | Affiliation |
1 VisionLabs VisionLabs
2 BOBO Zitong Yu, University of Oulu
3 Harvest Jiachen Xue, Horizon
4 ZhangTT Zhang Tengteng, CMB
5 Newland_ tianyan Xinying Wang, Newland Inc.
6 Dopamine Wenwei Zhang, huya
7 TecLab Jin Yang, HUST
8 Chuanghwa Telecom Lab.|Li-Ren Hou, Chunghwa Telecom
9 Wgqtmac Guoqging Wang, ICT
10 Hulking Yang, Qing, Intel
11 Dqiu Qiudi

Table 6 Names, affiliations and rankings of the participating systems in the multi-
modal track [43].

|Ranking| Team Name | Affiliation |
1 BOBO Zitong Yu, University of Oulu
2 Super Zhihua Huang, USTC
3 Hulking Qing Yang, Intel
4 Newland_ tianyan| Zebin Huang, Newland Inc.
5 ZhangTT Tengteng Zhang, CMB
6 Harvest Yuxi Feng, Horizon
7 Qyxqyx Yunxiao Qin, NWPU
8 Skjack Sun Ke, XMU
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Fig. 3 Samples from the CASIA-SURF CeFA dataset [44], consisting of 1,607 subjects,
three different ethnicities (i.e., Africa, East Asia, and Central Asia), four PA types (i.e.,
print, video-replay, 3D print and silica gel mask) and three modalities (s.e., colour, depth,
and NIR).

way as in the previous CVPR2019 multi-modal challenge [45] (see, Section
2.1.1). The CASIA-SURF CeFA was the first public dataset designed for
exploring also the racial bias of face PAD methods. Some samples of the
CASIA-SURF CeFA dataset are shown in Fig. 3.

The main motivation of CASTA-SURF CeFA dataset is to serve as a bench-
mark that allows evaluating the generalization of PAD methods across dif-
ferent ethnicities, PAIs and modalities under varying scenarios using four
specific protocols:

e Protocol 1: Cross-ethnicity generalization of PAD methods is evaluated
by using one ethnicity for training and validation, while the two remaining
ones are used as unseen ethnicities for testing.

e Protocol 2: Cross-PAI generalization of PAD methods is evaluated
by using print or video-replay attack for training and validation, while the
remaining three attacks are used as unknown PA types for testing.

e Protocol 3: Cross-modality generalization of PAD methods is evaluated
by using one modality for training and validation, while the two remaining
ones are used as unknown modalities for testing.

e Protocol 4: Cross-ethnicity and cross-PAI generalization of PAD meth-
ods is evaluated simultaneously by combining the first two protocols, i.e.,
using one ethnicity and PAI for training and validation, while the remaining
two ethnicities as well as three PAIs are used for testing.

The most challenging Protocol 4 was adopted for ranking the methods
in both unimodal and multi-modal tracks of the competition. As shown in
Table 7, this protocol consists of three subsets: training, validation, and test
sets, containing 200, 100, and 200 subjects for each ethnicity, respectively.
Note that the remaining 107 subjects correspond to the 3D masks attacks.
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Table 7 Protocols and statistics of the Protocol 4 of the CASIA-SURF CeFA [44]
dataset, where ’A’, ’C’, and "E’ denote Africa, Central Asia, and East Asia, respectively.

Subset Subjects w PAIs # images (RGB)
(one ethnicity) 4 1 4 2 4 3 4 1 4 2 4 3
Train 1-200 A C E  Video-Replay 33,713 34,367 33,152

Valid  201-300 A C E Video-Replay 17,008 17,693 17,109
Test 301-500 C&E A&E A&C Print+Mask 105,457 102,207 103,420

Since there are three ethnicities in CASIA-SURF CeFA, in total three sub-
protocols (i.e., 41,4 2and 4_3in Table 7) were adopted in the CVPR2020
challenge. In addition to the racial variation, the unknown PAIs introduced
in the test sets made the competition even more challenging.

2.2.2 Evaluation Protocol and Metrics

The challenge comprised development and final stages. The detailed protocols
are described as follows.

Protocol in development phase: (December 13, 2019 — March 1, 2020).
During the development phase, the participants had access to the labelled
training set and unlabelled validation set. Since the Protocol 4 of the CASIA-
SURF CeFA dataset used in this competition comprised three sub-protocols
(see Table 7), the participants first needed to train a model for each sub-
protocol and then predict the scores for each corresponding validation set.
Finally, the participants had to merge the predicted scores of the three sub-
protocols and submit the resulting final scores to the CodalLab platform,
where an immediate response was seen in the public leaderboard.

Protocol in final phase: (March 1, 2020 — March 10, 2020). During the
final phase, the labelled validation set and the unlabelled testing set were
released. The participants could first utilize the labels of the validation set
for model selection to improve the generalization on the test data. All results
of the three sub-protocols were made publicly available online in terms of
APCER, BPCER, and ACER. Like with the OULU-NPU dataset [3] used in
the IJCB2017 competition [1], the mean and variance of evaluated metrics
across the three different sub-protocols were calculated and included in the
final results.

Note that in order to fairly compare the performance of different submit-
ted systems, the use of external training datasets or pre-trained models was
explicitly prohibited in the CVPR2020 challenge. All participants were en-
couraged to release their source codes under feasible licences and to provide
a fact sheet describing their solution. All codes would be re-run and verified
by the organizing team after the final submission phase. For the sake of re-
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producibility and fairness, the final ranking of the teams was based on the
verified results.

Evaluation metrics: Similarly to the previous CVPR2019 competition
[45], also in the CVPR2020 challenge, the standardized ISO/IEC 30107-3 [32]
metrics (i.e., APCER, BPCER and ACER) were considered as the main
evaluation criteria (see, Section 2.1.2). Also, ROC curves were included for
visualization purposes and additional result analysis. The final rankings were
based on the ACER metric on the test set because it has been widely used
for evaluating the performance of face PAD systems in the literature and
majority of the previous face PAD competitions. The ACER threshold was
determined by calculating the Equal Error Rate (EER) operating point on
the validation set.

2.2.3 Results and Discussion

In this section, we first summarize the methods and report the results of the
unimodal track, and then analyse the solutions as well as the results of the
multi-modal track. Finally, we provide general discussion on the proposed
algorithms and competition.

Solutions of the unimodal (colour) track: Table 8 summarizes
the face PAD solutions of the teams participated in the unimodal track.
The source codes of ten teams, including VisionLabs!'®, BOBO!'!, Har-
vest!?, ZhangTT'3, Newland-tianyan'4, Dopamine'®, IecLab'®, Chungwa-
Telecom'”, Wgqtmac!'®, and Hulking'®, were made publicly available. It was
not surprising that every team adopted end-to-end learning based approaches
due to the strong representation capacity of modern deep models. Regard-
ing the model inputs, most of the teams used the provided facial colour
images directly, while the winning team VisionLabs considered two kinds
of pre-processing methods for dynamic inputs (i.e., optical flow [28] and
rank pooling [20] images). As for the backbone networks, only the team
Dopamine adopted spatio-temporal 3D convolutional neural network (CNN)
model, while the others relied on 2D CNNs (mostly ResNet). Most of the
solutions treated face PAD as a binary classification problem via simple bi-

10 yttps://github.com/AlexanderParkin/CASTA-SURF_CeFA

1 nttps://github.com/ZitongYu/CDCN/tree/master/FAS_challenge_CVPRW2020
12 pttps://github.com/yueyechen/cvpr20

13 nttps://github.com/ZhangTT-race/CVPR2020-SingleModal

14 https://github. com/XinyingWang55/RGB-Face-antispoofing-Recognition
15 https://github.com/xinedison/huya_face

16 yttps://github.com/1relia/CVPR2020-FaceAntiSpoofing

7 https://drive.google.com/open?id=10uL1X69K1QEU172iKH10~ _UvztlWsf_1
18 pttps://github. com/wgqtmac/cvpru2020.git

19 https://github.com/muyiguangda/cvpru-face-project
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nary cross-entropy (BCE) loss, but few teams (i.e., BOBO, Harvest, and
ZhangTT) considered pixel-wise depth loss, temporal continuous L1 regres-
sion loss, and multi-class softmax cross-entropy (CE) loss, respectively. It is
interesting to see from the last two columns of Table 8 that most of the so-
lutions leveraged dynamic cues but did not adopt complex model ensemble
strategy.

Table 8 Summary of the top-performing solutions in the unimodal track of the
CVPR2020 challenge, where ’S/D’ indicates Static/Dynamic, ’OF’ and 'RP’ for op-
tical flow [28] and rank pooling [20], 'BCE’, ’CDC’, and 'CDL’ binary cross-entropy,
central difference convolution, and contrastive depth loss, respectively.

Team Name Method (keywords) Input Backbone Loss function ~ S/D Ensemble
VisionLabs Creating artificial modalities OF+RP SimpleNet [57] BCE loss D No
BOBO CDC, CDL, Attention RGB CDCN |[87] Depth loss S Yes
Harvest Motion-aware labels RGB ResNet101 L1 loss D Yes
ZhangTT Quality tensor Grayscale ResNet [26] 4-class CE loss D No
Newland-tianyan Subtracted neighborhood mean RGB 5-layer network BCE loss D No
Dopamine Multi-task learning RGB ResNet100 BCE + face ID loss S No
TecLab Authenticity+expression features ~ RGB 3DResNet [25] BCE loss D No
Chunghwa-Telecom Bag of local features RGB  MIMAMO-Net [13] BCE loss S Yes
Wegqgtmac Warmup strategy RGB ResNet18 BCE loss S No
Hulking Frame vote module RGB patch PipeNet [20] BCE loss D No
Dqiu - RGB ResNet50 BCE loss S No
Baseline Hybrid feature fusion RGB+RP SD-Net [44] BCE loss D No

Results of the unimodal (colour) track: The final results of the 11
participated teams are shown in Table 9. The final ranking was based on the
mean ACER computed over the three sub-protocols. The EER thresholds
from the validation set are also reported in Table 9. The threshold values
for the best-performing algorithms were either extremely large (e.g., more
than 0.9 for BOBO) or small (e.g., 0.01 for Harvest), except for VisionLabs’s
algorithm that was more stable with threshold values around 0.5. Vision-
labs achieved the highest accuracy in detecting the PA samples (APCER
= 2.72%), while Wgqtmac’s algorithm obtained the best results in terms of
BPCER (0.66%). In overall, the first ten teams were performing better than
the baseline method [44] in terms of ACER. The top three teams obtained
excellent ACER values below 10%, and the team VisionLabs achieved the
first place with a clear margin.

The ROC curves of the three sub-protocols are given in Fig. 4 to further
analyse the trade-off between APCER and BPCER, i.e., tuning the oper-
ating point according to the requirements of a given real-world application.
The results of the winning team VisionLabs (blue curve) on all three sub-
protocols are clearly superior compared to others, indicating the benefits of
optical flow based motion clues and rank pooling images in improving the
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Table 9 The results of the unimodal track of the CVPR2020 challenge [44]. Avg+Std
denotes the mean and variance computed across the three sub-protocols. The best results
are shown in bold.

Team Name  Threshold  FP FN APCER(%) BPCER(%) ACER(%) Rank
VisionLabs 0.34+0.48  2£2 21+9 0.11+£0.11 5.33+2.37 2.72%£1.21 1
BOBO 0.97£0.02 129467 10+2 7.18%£3.74 2.50+0.50 4.84+1.79 2
Harvest 0.01+£0.00 85447 55+10 4.74+2.62 13.83£2.55 9.28+2.28 3
ZhangTT 0.9 97+37  75+£31 5.40£2.10 18.91£7.88 12.16+2.89 4
Newland-tianyan 0.674+0.11 282+239 44462 15.66+13.33 11.16£15.67 13.41£3.77 5
Dopamine 0.07+0.11 4424168 10+12 24.5949.37 2.50£3.12 13.54+£3.95 6
IecLab 0.40£0.07 597£103 2442 33.16+5.76 6.08+£0.72 19.62+£2.59 7
Chunghwa-Telecom 0.86+£0.06 444493 76+£34 24.66+5.16 19.00£8.69 21.83+1.82 8
Wegqtmac 0.80+0.22 928+310 2+3 51.57+17.24 0.66+0.94 26.12+8.15 9
Hulking 0.76+0.08 810£199 78+53 45.00+£11.07 19.50£13.27 32.25+3.18 10
Dqiu 1.00£0.00 8494407 116+48 47.16£22.62 29.00+12.13 38.08£15.57 11
Baseline 1.004£0.00 11824300 30425 65.66+16.70 7.58+6.29 36.62+5.76
ROC (Prot.4_1) ROC (Prot.4_2) ROC (Prot.4_3)
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Fig. 4 The ROC curves for the 12 teams participating in the unimodal track of the
CVPR2020 challenge [44]. From left to right are the ROC curves for protocol 4 1,4 2
and 4__3, respectively.

generalization performance. However, the TPR value of the remaining teams
decreases rapidly as the FPR reduces (e.g., TPRQFPR=10"3 values for these
teams are almost zero). In addition, although the ACER of the team Harvest
was worse than that of the team BOBO, its TPRQFPR=10"3 was signifi-
cantly better than that of BOBO. It was mainly because the values of FP
and FN samples for the team Harvest were relatively close to each other (see
Table 9).

Solutions of the multi-modal track: Table 10 summarizes the face
PAD solutions of the teams that participated in the multi-modal track. The
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source codes of seven teams, including BOBO, Super??, Hulking?!, Newland-
tianyan??, ZhangTT?3, Qyxqyx??, and Skjack?®, were made publicly avail-
able. Most of the teams exploited all the three modalities (colour, depth and
NIR) for feature and score level fusion, except for the teams ZhangTT and
Harvest who considered only depth and NIR modalities. There were no teams
using data level fusion strategy. As for the architectures and loss functions,
teams BOBO and Qyxqyx adopted MM-CDCN [83] and DepthNet [49] with
pixel-wise supervision, while the other teams relied on ResNet with BCE loss.
In contrast to the unimodal track, the use of static cues and ensemble models
were popular in the multi-modal track.

Table 10 Summary of the top-ranked solutions of the multi-modal track in the
CVPR2020 challenge.

Team Name  Modality Fusion Backbone Loss function S/D Ensemble
BOBO RGB, Depth, NIR Feature & score level MM-CDCN [83] Depth loss S Yes
Super RGB, Depth, NIR SE fusion in feature level ResNet34/50 BCE loss S Yes

Hulking RGB, Depth, NIR Feature level PipeNet [79] BCE loss D No
Newland-tianyan Grayscale, Depth, NIR Score level Resnet9 BCE loss S No
ZhangTT Depth, NIR Feature level ID-Net BCE loss S Yes
Harvest NIR No fusion - Triplet loss S No
Qyxqyx RGB, Depth, NIR Score level DepthNet [49] BCE+BinaryMap loss S Yes
Skjack RGB, Depth, NIR Feature level Resnet9 BCE loss S No
Baseline RGB, Depth, NIR, RP Feature level PSMM-Net [44] BCE loss D No

Results of the multi-modal track: The results of the eight teams
participating in the final stage are shown in Table 11. The team BOBO team
achieved the best performance in terms of BPCER = 1.00% and ACER =
1.02%, and the team Super ranked second with a minor margin ACER =
1.68%. It is worth noting that the team Newland-tianyan achieved the best
results in terms of APCER (0.24%). Similarly to the unimodal track, most
of the participating teams had relatively large EER thresholds calculated
on the validation set, especially the teams Super and Newland-tianyan with
threshold values of 1.0, indicating that the samples would be easily classified
as anomalies. In addition, it can be seen that the ACER values of the four
top teams were 1.02%, 1.68%, 2.21% and 2.28%, all outperforming the best
performance (2.72% ) reported in the unimodal track. This suggests that the

20 nttps://github.com/hzh8311/challenge2020_face_anti_spoofing
21 https://github.com/ZhangTT-race/CVPR2020-SingleModal

22 https://github. com/Huangzebin99/CVPR-2020

23 https://github.com/ZhangTT-race/CVPR2020-MultiModal

24 https://github.com/qyxqyx/FAS_Chalearn_challenge

25 nttps://github.com/skJack/challange.git
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Table 11 The results of the multi-modal track in the CVPR2020 challenge [44].
Avg+Std indicates the mean and variance across the three folds and the best results
are shown in bold.

Team Name  Threshold FP FN APCER(%) BPCER(%) ACER(%) Rank
BOBO 0.95+£0.02  19£11 4+2 1.05£0.62 1.00+0.66 1.02+0.59 1
Super 1.0£0.00 11.33£7.76 11£6 0.62+0.43 2.75£1.50 1.684+0.54 2
Hulking 0.98+0.02  58+35 4+4  3.25+£1.98 1.16+1.12 2.214+1.26 3

Newland-tianyan 1.0040.00 4+4 17+12 0.24+0.25 4.33+3.12 2.284+1.66 4

ZhangTT 0.87+0.07 56+51 17+17 3.114£2.87 4.41+4.25 3.76£2.02 5

[§
7
8

Harvest 0.92+0.04 104+84 13£12 5.77+4.69 3.33£3.21 4.55+3.82
Qyxqyx 0.95+0.05 924142 26£23 5.12+£7.93 6.66+£5.86 5.89+4.04
Skjack 0.00£0.00 10124447 47+45 56.24424.85 11.75+11.37 33.9947.08
Baseline 0.39£0.52 872+463 62+43 48.46+25.75 15.58+10.86 32.0217.56
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Fig. 5 The ROC curves of nine teams in the multi-modal track [44]. From left to right
are the ROC curves on protocol 4_1, 4_2 and 4_ 3, respectively.

additional modalities are indeed useful in improving robustness of face PAD
under the challenging cross-ethnicity and cross-PAI conditions.

The ROC curves of the solutions in multi-modal track are shown in Fig. 5.
From the Table 11 and Fig. 5, we can find that even though the ACER values
of the top two algorithms were relatively close, the stability of the team
Super (brown curve) is better than that of the team BOBO (blue curve).
For instance, the TPRQFPR=10"2 values for Super and Newland-tianyan
were better than that of BOBO on all three sub-protocols. In other words,
compared with the BCE loss based solution, the depth-wise supervision in
team BOBQ'’s solution might cause larger bias between metrics ACER and
TPRQFPR=10"3.

Discussion: From Tables 9 and 11 of the competition results, we can find
that the EER thresholds computed on the validation set for both unimodal
and the multi-modal track were generally high, indicating that the proposed
algorithms might easily make over-confident or biased decisions. The reason
behind this might be two-fold: 1) the biased distributions of the CASIA-
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SURF CeFA dataset, e.g., as the environments for the attack samples were
more diverse, while bona fide samples were usually recorded indoor, and
2) the lack of generalization when the algorithm faces unknown PA types
and ethnicities. Moreover, rethinking the evaluation metric for ranking the
solutions is necessary. It can be seen from the both tracks that some solutions
(e.g., the team BOBO) could achieve excellent ACERs but, on the other hand,
unsatisfying ROC curves, especially at operating points with low FPR.

2.3 CelebA-Spoof Challenge on Face Anti-Spoofing
(ECCV2020)

Despite both the CVPR2019 [45] and CVPR2020 [43] competitions were suc-
cessful in benchmarking the generalization of unimodal and multi-modal face
PAD methods in challenging settings, the amount of data (number of images
< 150,000 and subjects < 1000) and domain diversity (only indoor conditions)
of these two previous contests were still limited for evaluating the performance
of FAS methods ’in the wild’. Recently, a large-scale face PAD dataset, namely
CelebA-Spoof [93], containing 625,537 face images of 10,177 subjects, was re-
leased. It is still the largest publicly available face PAD dataset in terms
of the number of images and subjects. Leveraging the CelebA-Spoof dataset,
the CelebA-Spoof Challenge on Face Anti-Spoofing [94] was organized in con-
junction with the European Conference on Computer Vision (ECCV) 2020
Workshop on Sensing, Understanding and Synthesizing Humans?5. The goal
of this competition was to boost the research on large-scale face anti-spoofing.

The ECCV2020 challenge was also hosted in the CodaLab platform?7.
After registering to the competition, each team was allowed to submit their
models to the Amazon Web Services (AWS) and allocated with one 16 GB
Tesla V100 GPU to perform online evaluation on the hidden test set. The
encrypted prediction files, including the results for each data sample in the
hidden test set, were sent to the teams via an automatically generated email
after their requested online evaluation was finished. The teams were required
to upload their encrypted prediction files to the CodalLab platform for ranking
the algorithms.

The ECCV2020 challenge lasted for nine weeks from August 28, 2020 to
October 31, 2020. During the contest, the participants had access to the pub-
lic CelebA-Spoof dataset and were restricted to use only the public CelebA-
Spoof training dataset for building their models. The results of the challenge
were announced on February 10, 2021. A total number of 134 participants
registered for the competition, while 19 teams made valid submissions in
the end. The details and results of top five teams are shown in Table 12.

26 https://sense-human.github.io/
27 https://competitions.codalab.org/competitions/26210
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It is surprising to see that all top three teams were from industry, indicat-
ing even increasing attention on PAD for real-world AFR applications. It is
worth noting that the top three teams achieved TPR=100%QFPR=5%10"3,
indicating the effectiveness of the solutions for large-scale face PAD on the
CelebA-Spoof dataset.

Table 12 Final results of the top-5 teams in the ECCV2020 challenge.

Ranking Team User Affiliation aF PI;{Pfl 0-3 @FP RTS?* 10-% @F PI;{Pfl 0—6
1 ZOLOZ ZOLOZ ZOLOZ 1.00000 1.00000 1.00000
2 MM liujeff ~ Meituan 1.00000 1.00000 0.99991
3 AFO  winboyer Meituan 1.00000 1.00000 0.99918
4 k_ k_ - 0.99973 0.99927 0.98026
5 SmartQ SmartQ - 0.99963 0.99872 0.96938

;\\ Outdoor

Fig. 6 Representative samples and attributes in the CelebA-Spoof dataset [93].

2.3.1 Dataset

The ECCV2020 challenge employed the CelebA-Spoof dataset [93] for train-
ing and evaluation purposes. The CelebA-Spoof is a large-scale face PAD
dataset that has 625,537 images corresponding to 10,177 subjects, including
43 rich attributes on face, illumination, environment, and PA types. Bona
fide facial images were selected from the CelebA dataset [50] but they were
also manually examined to find and remove possible “attack” samples, includ-
ing posters, advertisements and artistic drawings. The corresponding attack
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samples with four different PATs (i.e., 2D print, cut paper, video-replay and
3D paper mask) were collected and annotated to form the CelebA-Spoof
database. Among the 43 rich attributes, 40 attributes describe the bona fide
images, including all facial components and accessories (e.g., skin, nose, eye,
eyebrow, lip, hair, hat, and eyeglasses), while the three remaining attributes
describe the attack samples, including PAI, environments (e.g., indoor and
outdoor) and illumination conditions (e.g., strong, weak, back, dark and nor-
mal). Some typical samples in the CelebA-Spoof database are shown in Fig. 6.

2.3.2 Evaluation protocol and metrics

The training, validation, and test sets of the original CelebA-Spoof database
were split into subject-disjoint folds with a ratio of 8 : 1 : 1. The compilation
of the hidden test data devised for the ECCV2020 challenge was as the same
as for the public test set. All the teams participating in the competition
were restricted to train their algorithms using only the training subset of the
publicly available CelebA-Spoof dataset, thus the use of both proprietary and
public external datasets was explicitly forbidden.

Unlike in the two previous contests (i.e., CVPR2019 [45] and CVPR2020 [43]),
TPRQFPR based evaluation criteria were adopted for the ECCV2020 chal-
lenge. The TPRG@FPR=5"3 determined the final ranking but also TPR@FPR=10"3
and TPRQFPR=10"* values were reported. In the case if the TPRQFPR=5"3
for two submitted algorithms were the same, the one with higher TPRQFPR=10"*
would rank better.

Table 13 Summary of the top-ranked solutions [94] in the ECCV2020 challenge.

Team Input Model Ensemble strategy
ZOLOZ Face FOCUS, AENet, ResNet, Attack types, Noise Print Heuristic voting strategy
MM  Face + Patches CDCN++, LGSC, SE-ResNet50, EfficientNet-B7, SE-ResNeXt50  Weight-after-sorting
AFO Patches CDCN, CDC-DAN, SE-ResNeXt26, Light-weighted Network ‘Weighted summation

2.3.3 Results and Discussion

In this section, we first analyse the top three solutions as well as their results,
and then we discuss the algorithms and challenge in general.

Analysis on the top three solutions: Table 13 summarizes the FAS so-
lutions of the top three teams. It is not surprising that all the best-performing
solutions exploited ensembles of multiple deep models to achieve more robust
performance. As the use of external training data in addition to the compe-
tition dataset was explicitly forbidden, the features of a single model can
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easily overfit and learn specific attack cues, while stacking the feature rep-
resentations of multiple (deep) models can be more generalizing to alleviate
this issue. To be more specific, the two best teams ZOLOZ and MM utilized
more advanced ensembling strategies compared with the team AFO consid-
ering only straightforward weighted summation. The team ZOLOZ proposed
a heuristic voting scheme at the score level to form robust combinations of
different models, whereas the team MM proposed a novel 'weighting-after-
sorting’ strategy based on particle swarm optimization (PSO) [36] algorithm
for their model ensembles. All three teams utilized at least five different deep
model architectures, of which some (e.g., FOCUS [94], AENet [93], Noise
Print [33], CDCN [87], CDCN++ [87], LGSC [19], CDC-DAN [94]) were aim-
ing at capturing fine-grained (pixel-wise) fidelity characteristics, while some
others (e.g., ResNet [26], SE-ResNet [29], EfficientNet [70], ResNeXt [78])
focused on extracting semantic cues that could be complementary to im-
prove face PAD performance. As for the model inputs, both whole facial
images and local image patches were utilized by team MM, while the team
ZOLOZ and AFO considered only the whole facial images and local image
patches, respectively. It can be seen from the Table 12 that all top three teams
achieved excellent PAD performance, reaching TPR>0.999QFPR=10"9, in-
dicating the effectiveness of deep multi-model ensembles on the competition
data.

Discussion: Although the aforementioned best solutions achieved very
promising results on the CelebA-Spoof dataset, there were still some short-
comings with the ECCV2020 challenge. The hidden test set is rather similar
compared with the training data because the CelebA-Spoof dataset was sim-
ply divided into subject-disjoint training, development and test folds, thus
not explicitly taking into account specific known issues related to domain
generalization or unknown PAs. Furthermore, there were no restrictions on
the size or number of deep models, which was also disappointing from real-
world deployment point of view. Finally, compared with previous two face
PAD challenges (i.e., CVPR2019 [45] and CVPR2020 [44]), detailed abla-
tion studies (e.g., impact of each sub-model prior stacking) were missing, as
well as the source codes of the solutions were not made public available in
the ECCV2020 challenge, thus limiting the transparency and, consequently,
usefulness of the whole competition to the FAS community.

2.4 LivDet-Face 2021 — Face Liveness Detection
Competition (IJCB2021)

Recent literature surveys (e.g., [52, 84]) have concluded that both hand-
crafted and deep features yield in satisfying classification performance in
identifying known PAIs but often fail to detect unknown PAIs and more so-
phisticated face artefacts. Therefore, continuous efforts are necessary to up-
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date face anti-spoofing algorithms to detect rapidly evolving PAs. Although
earlier the CVPR2020 cross-ethnicity face PAD challenge considered also a
cross-PAI setting (i.e., training on the video-replay attacks and testing on the
print and mask PAITs), the types and quality of the unknown PATs were still
limited from the generalized PAD point of view. To address this issue, the
LivDet-Face 2021 — Face Liveness Detection Competition [58] was organized
in conjunction with IJCB2021.

The registration for the IJCB2021 LivDet-Face competition began on
February 15, 2021 and ended on April 25, 2021, while the final submission
deadline was April 30, 2021. The objective of the competition was to eval-
uate the performance of the state-of-the-art face PAD algorithms against
traditional and novel PAIs. The competition had two separate tracks for im-
age and video data, and the competitors were allowed to participate in both
tracks. Different from all previous competitions, IJCB2021 LivDet-Face con-
test did not provide any specific training dataset to the participants, thus the
competitors were free to use any proprietary and/or publicly available data
to train their algorithms, replicating more realistic and challenging practical
AFR application scenarios.

Both academic and industrial organizations were welcome to participate
in IJCB2021 LivDet-Face competition anonymously or non-anonymously. In
total, thirty international teams registered to the competition, including ten
submissions for the image track and six submissions for the video track.
Finally, six submission could be successfully tested by the organizers for the
image track and five submission for the video track. Unsuccessful tests were
due to software issues, which were communicated with the participants.

Al

(a) Photo Mask

(d) High Quality Paper Display

(c) Low Quality Paper Display

(b) Laptop Display

(e) Low Quality 3D Mask (f) Medium Quality 3D Mask (g) High Quality 3D Mask (h) Silicon Mask

Fig. 7 Samples of each PA type present in the IJCB2021 LivDet-Face test set [58].



26 Zitong Yu, Jukka Komulainen, Xiaobai Li and Guoying Zhao

2.4.1 Dataset

No official training dataset was shared by the organizers of the IJCB2021
LivDet-Face competition. Instead, participants were encouraged to use any
data available to them (i.e., from both public and proprietary sources) to
train and tune their algorithms. The organizers shared only few (no more
than two) examples of the known PAIs to familiarize the competitors with
the test dataset, while the remaining samples of the disclosed PAI types
were considered as unknown to the competitors. The test dataset used in
the IJCB2021 LivDet-Face competition was a combination of data from two
of the organizing institutions: Clarkson University (CU) and Idiap Research
Institute. The dataset consisted of 724 images (135 bona fide and 589 PAI
samples) and 814 videos (125 bona fide and 689 PAI samples) for the im-
age and video tracks, respectively. The data was collected from in total 48
live subjects using altogether five different sensors (digital single-lens reflex
(DSLR) camera, iPhone X, Samsung Galaxy S9, Google Pixel and Basler
aA1920-150uc). The length of the videos in the test dataset was up to six
seconds. Eight PAIs for the image track and nine PAIs for the video track
were included in the dataset (see Table 14 for a summary and Fig. 7 for
typical examples for each PAI type).

Regarding the 2D PAIs, 100 low-quality (LQ) print paper, 100 high-quality
(HQ) photo paper attacks, 100 static display (SD) and video-replay (VR)
attacks on laptop screen, and 100 2D photo mask attacks were collected
from 25 live subjects using four different sensors. Specifically, the 100 video-
replay attacks were used only as an unknown PAI for the video category
of the competition, thus were not introduced in the few validation samples
that were shared with the competitors. In addition to the 2D attacks, three
different qualities of 3D masks (low, medium, and high) as well as silicon mask
attacks were included in the test dataset for the both competition tracks. A
total number of 24 images and 24 videos of low-quality (LQ) 3D masks were
created corresponding to six live subjects. Also, 12 medium-quality (MQ)
3D mask and 12 high-quality (HQ) images/videos corresponding to three
live subjects were included in the test dataset. The HQ 3D masks were kept
as an unknown PAIs for the competitors in the test dataset. In total, 141
image/video samples of wearable 3D silicon masks were collected using five
different sensors.

2.4.2 Evaluation protocol and metrics

During the IJCB2021 LivDet-Face competition, at least two samples of the
majority of the considered PATs (except the high-quality 3D masks and video-
replay attacks) were shared with the competitors of both image and video
tracks as a small validation set to fine-tune their algorithms. The performance
of an algorithm for each sample was determined by an output (“liveness”)
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Table 14 Summary of the test dataset used in the IJCB2021 LivDet-Face [58].

Class Types of PAls Images Videos Sensors

Live - 135 125 DSLR, iPhone X, Samsung Galaxy S9, Google Pixel
PAI Laptop Display (DL) 100 100 DSLR, iPhone X, Samsung Galaxy S9, Google Pixel
PAI Photo Mask (PM) 100 100 DSLR, iPhone X, Samsung Galaxy S9, Google Pixel
PAI Low-Quality Paper Display 100 100 DSLR, iPhone X, Samsung Galaxy S9, Google Pixel
PAI High-Quality Paper Display 100 100 DSLR, iPhone X, Samsung Galaxy S9, Google Pixel
PAI Low-Quality 3D Mask 24 24 DSLR, iPhone X, Samsung Galaxy S9, Google Pixel
PAI Medium-Quality 3D Mask 12 12 DSLR, iPhone X, Samsung Galaxy S9, Google Pixel
PAI High-Quality 3D Mask 12 12 DSLR, iPhone X, Samsung Galaxy S9, Google Pixel
PAI Silicon Mask 141 141 DSLR, iPhone X, Samsung Galaxy S9, Google Pixel, Basler acA1920-150uc
PAI Video Display (VD) - 100 DSLR, iPhone X, Samsung Galaxy S9, Google Pixel

score ranging between 0 and 100 with a threshold of 50, while the score of 1000
indicates undetected samples. The test samples with scores less than 50 were
classified as PA, whereas the scores of 50 and above were classified as bona
fide. Most of the competitors normalized their output scores at their end and
provided a score of 0, 100 or 1000 (if undetected) based on their classification
output. If the submitted algorithms provided a score of 1000 for the PAs, the
result was considered as a correct decision as the algorithm was able to reject
an attack, thus is not included in attack presentation classification errors. A
score of 1000 for bona fide samples were considered as incorrect, thus was
accumulated in bona fide classification errors.

Following the recommendations of the ISO/IEC 30107-3 [32] standard,
APCER, BPCER, and ACER (see, Section 2.1.2) were used as the evaluation
metrics like in the CVPR2020 challenge. Since all algorithms were required
to deliver normalized liveness scores in the range of 0 — 100, ¢t = 50 was
used as the decision threshold to calculate the APCER and BPCER. The
final ranking of teams was based on the ACER calculated over all the test
samples.

Table 15 Summary of the solutions of in IJCB2021 LivDet-Face [58].

Team Training/validation Model Ensemble strategy
Fraunhofer IGD CRMA for validation 12 models (DeepPixBis, ResNeXt, etc.) FDR weights
SiMiT Lab Replag%ﬁiiie), f(S)ir\Yr’agllilrllgNPU’ DeepPixBis, EfficientNet-B7 Mean score fusion
CLFM - CDCN -
FaceMe - 3 models (DepthNet, Digital signal processor, etc.) -
little tiger ~ Glint360k for pre-training 5 models (ResNet50, ResNext26, CDCN, etc.) -

SWAN, CASIA-FASD, NTNU- 6 models (Resnet18, Resnet50, InceptionV3, 9

Silicon Mask for training VGG1, VGG16, Alexnet) with 2 linear SVM Majority voting

NTNU Gjgvik




28 Zitong Yu, Jukka Komulainen, Xiaobai Li and Guoying Zhao

2.4.3 Results and Discussion

In this section, we first analyse the solutions of both tracks. Then, the result
analysis of the image and video tracks is presented. Finally, we discuss the
algorithms and the challenge in general.

Analysis on the solutions: Table 15 summarizes the FAS solutions of
the six teams. The teams SiMiT Lab and NTNU Gjgvik utilized several
public datasets for training, including the 2D PAI (e.g., Replay-Mobile [9],
SiW [49], Oulu-NPU [3], SWAN [59], CASIA-FASD [95]) and 3D mask attack
(e.g., 3DMAD [17] and NTNU-Silicon Mask [60]) data. The team Fraunhofer
IGD improved the generalization of their algorithm by using the 50 attacks
and bona fide samples from the Real Mask Attack Database (CRMA) [18] as
unknown development data to tune the decision threshold.

Like in the previous three challenges discussed already in this chapter,
most of the solutions in IJCB2021 LivDet-Face competition used ensembles
of multiple deep models to achieve more robust performance. The teams
Fraunhofer IGD, SIMiT Lab, FaceMe, little tiger and NTNU Gjgvik stacked
12, 2, 3, 5 and 6 models in their submitted systems to make the final PAD
decision. Three kinds of models were considered in these solutions: 1) hand-
crafted models with digital signal processing, 2) pixel-wise supervised models
(e.g., DeepPixBis [21], DepthNet [49] and CDCN [86]), and 3) BCE super-
vised models (e.g., ResNet [26], ResNeXt [78], VGG [65], Inception [69] and
Alexnet [40]). The team Fraunhofer IGD adopted Fisher discriminant ra-
tio (FDR) weights [11] for 12 models to get a combined face PAD decision,
while the team NTNU Gjgvik considered a simple majority voting strategy to
make decision from six models, and the team SiMiT Lab fused the scores from
two models with shuffled patch-wise supervision [35]. Some competitors (e.g.,
teams CLFM and FaceMe) were lacking these kinds of details in their method
descriptions, thus making it impossible to draw conclusions on some factors
in our result analysis, including data fusion approaches and training/tuning
data.

Table 16 Results of the image track in the IJCB2021 LivDet-Face competition. The
APCER is respectively calculated for each type of PAI, and then averaged for final
ACER calculation.

Team | P2 IReplaylop Maskl 3D Mask IBPCER(%) ACER(%) | Ranking
| LQ HQ| | | LQ MQ HQ Silicon|
Fraunhofer IGD| 0 24| 45 | 14.7 |4.17 833 14.29 16.31| 15.33 16.47 | 1
CLFM  |6.06 10| | 5.88 | 0 16.67 21.43 34.75| 24.08 1871 | 2
FaceMe  [22.22 11| 3 | 11.76 |66.67 66.66 50 57.45| 16.06 2072 | 3
little tiger ~ [41.41 52 | | 58.82 |[54.17 25 2857 82.98| 21.17 33.92 | 4
SiMiT Lab | 7.07 18| 43 | 15.68 |16.66 0 42.85 80.85| 51.09 42.05 | 5
Anonymous |78.78 86| 77 | 89.21 |87.5 83.33 100 98.58 | 16.79 4935 | 6
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Results of the image track: Table 16 summarizes the results of the
image track. The team Fraunhofer IGD was the winner, obtaining the lowest
ACER = 16.47%, followed by the team CLFM with a narrow margin in
ACER = 18.71%. The winning team Fraunhofer IGD achieved the lowest
BPCER = 15.33% among the six competitors. The six competitors achieved
highly varying performances across the different PAI types. The algorithm
submitted by the team Fraunhofer IGD detected all the low-quality paper
display attacks, and the algorithm by CLFM successfully detected all the
low-quality 3D mask samples. Team CLFM'’s algorithm also performed the
best with APCER = 10% for high-quality photo paper display samples but
achieved an unsatisfying BPCER = 24.08%. The team FaceMe, who achieved
third place in the image track, achieved the best APCER = 3% for laptop
display samples and second-best BPCER = 16.06%. The team SiMiT Lab
successfully detected all the medium-quality 3D mask samples with APCER
= 0%, which was best among all the competitors, but achieved also the worst
BPCER = 51.09%.

By comparing the performance of the top two ranked solutions in the
image track, it is obvious that the models performed better against low-
quality PAIs than higher quality PAIs. The team Fraunhofer IGD obtained
APCER = 0% for the low-quality paper display and APCER = 24% for
high-quality paper display. Similarly, the team CLFM obtained APCER =
6.06% for low-quality paper display, and APCER = 10% for high-quality
paper display. The same trend can be observed for the different quality of 3D
face masks. The team Fraunhofer IGD obtained APCER = 4.17% for low-
quality 3D masks compared with APCER = 8.33% for medium-quality 3D
masks, APCER = 14.29% for high-quality 3D masks and APCER = 16.31%
for high-quality silicon masks. Similarly, the team CLFM achieved APCER
= 0% against low-quality 3D masks compared with APCER = 16.67% for
medium-quality 3D masks, APCER = 21.43% for high-quality 3D masks and
APCER = 34.75% for high-quality silicon masks.

Table 17 Results of the video track in the IJCB2021 LivDet-Face competition.

Team | Paper [Replay|yp yp | 3D Mask |BPCER (%) ACER(%)|Ranking
|LQ HQ |SD VR| |[LQ MQ HQ Silicon|
FaceMe | 8 10.10]18 16| 6.93 |40 45.4538.46 9.22 | 14.29 13.81 | 1
Fraunhofer IGD | 1 252529 9| 1 |4 909 0 1277 16.67 1449 | 2
CLFM |4 404|8 1] 0 |0 2727 7.69 1.42| 39.68 2149 | 3
NTNU Gjovik-V1| 50 59.60|83 75| 18.81 |36 18.18 46.15 21.28 | 4.76 2651 | 4
NTNU Gjovik-V2| 5 9.09]32 20| 1 |0 0 0 3333| 5159 34.05 | 5

Results of the video track: Table 17 summarizes the results of the
five solutions in the video track of the IJCB2021 LivDet-Face competition.
The team FaceMe was the winner with the ACER = 13.81% followed by the
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team Fraunhofer IGD with a narrow margin in ACER = 14.49%. The lowest
BPCER = 4.76% was achieved by the team NTNU Gjovik. The team CLFM
performed well in detecting paper and video-replay attacks (with APCER <
3.30% for all scenarios) but ranked third due to the bad BPCER performance
(39.68%). The team NTNU Gjovik-V2 performed well against 3D face mask
attacks, achieving APCER = 0% for the three different types of 3D masks
but also the worst BPCER (51.59%).

It can be observed that the top two solutions performed better against low-
quality PAIs compared to higher-quality PAIs. For example, the performance
of the team Fraunhofer IGD against low-quality paper display was APCER
= 1%, while APCER = 25.25% was obtained against the high-quality paper
display attacks. The same trend can be observed for the different quality of
3D face masks as well. The performance of the team Fraunhofer IGD against
low-quality 3D masks was APCER = 4%, which was obviously better than
that of the medium-quality (APCER = 9.09%) and high-quality silicon masks
(APCER = 34.75%). However, the performance of high-quality 3D masks was
better than that of any other 3D mask category with APCER = 0%.

Discussion: Compared with the three earlier competitions [45, 43, 94] in-
troduced in this chapter, a significant degradation in the overall performance
can be observed. This can be due to several factors, such as: 1) increased
complexity in the test dataset with nine different PAT types, 2) introduc-
tion of three novel attack types with limited availability, or not covered at
all, in the public datasets, 3) lack of specific competition training dataset,
i.e., choice of training data up to the competitors, 4) domain shift between
the training and test conditions in terms of environmental factors, sensors,
quality of PAIs, and the introduction of unknown PAIs. The results of this
competition indicate that generalized face PAD is still far away from a solved
research problem.

Despite its important findings on the current state of face PAD ’in the
wild’, the IJCB2021 LivDet-Face competition still had some shortcomings.
First, as there were no pre-defined training sets and, consequently, no restric-
tions on the diversity and scale of the private or public datasets, it is unfair to
evaluate the performance of the different approaches. It is simply impossible
to explore the hidden reasons behind the differences in performance and to
tell if an algorithm actually better than another one, or is it in fact a matter
of the amount and quality of training data. Second, no ablation studies or
open-source code for most of the solutions were provided, which again lim-
its the transparency and, consequently, usefulness of the results and findings
to the FAS community. Finally, as the complexity of the proposed systems
was not limited, mainly huge ensembles of deep models were adopted by the
participants, while none of the teams proposed interesting novel efficient face
PAD approaches.
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2.5 3D High-Fidelity Mask Face Presentation Attack
Detection Challenge (ICCV2021)

As seen in two recent competitions (i.e., CVPR2020 [43] and 1JCB2021
LivDet-Face [58]), face PAD performance of state-of-the-art methods drops
significantly under unknown 3D mask attacks. However, the previous com-
petition datasets contained in general only a limited number of samples and
types of 3D facial masks, thus there is a large gap in between the existing
benchmarks and 3D mask attack detection in real-world conditions. To al-
leviate the threats posed by 3D mask attacks and to improve the reliability
of face PAD methods under emerging types of 3D mask attacks in various
scenarios, the 3D High-Fidelity Mask Face Presentation Attack Detection
Challenge [46] was organized in conjunction with the International Confer-
ence on Computer Vision (ICCV) in 2021 using the very recently constructed
CASIA-SURF High-Fidelity Mask (HiFiMask) dataset [47].

The ICCV2021 challenge was conducted using the CodaLab platform?®,
attracting 195 teams from all over the world. A summary with the names and
affiliations of teams that entered the final stage of the contest is shown in
Table 18. Again, the majority of the final participants came from industrial in-
stitutions, and all the six best-performing teams represented companies. This
indicates clearly that mask attack detection is no longer limited to academic
research but also a crucial problem in real-world AFR applications. The re-
sults of the top three teams were far better than the baseline results [47], thus
greatly improving the performance of 3D high-fidelity mask attack detection.

2.5.1 Dataset

HiFiMask [47] is currently the largest 3D face mask PAD dataset, consisting
of 54,600 videos corresponding to 75 subjects with three skin tones, including
25 subjects in yellow, white, and black, respectively. The database contains
three high-fidelity masks for each identity, which are made of transparent,
plaster and resin materials, respectively. During the acquisition process, six
complex scenes were considered for recording the videos (i.e., white light,
green light, periodic three-colour light, outdoor sunshine, outdoor shadow,
and motion blur). For each scene, there are six videos captured under different
lighting conditions (i.e., normal, dim, bright, back, side, and top) to explore
the impact of directional lighting. Periodic lighting within [0.7, 4] Hz in the
first three scenarios (see, the first three columns of the last row in Fig. 8 for
examples) tries to mimic the natural human pulse variations to fool remote
photoplethysmography (rPPG) based mask detection technology (e.g., [42]).
Finally, seven mainstream imaging devices (i.e., iPhonell, iPhone X, MI10,
P40, 520, Vivo and HJIM) were utilized for recording the videos in order to

28 https://competitions.codalab.org/competitions/30910
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Table 18 Names, affiliations and final ranking of the teams participating in the
ICCV2021 challenge.

[Ranking] Team Name |  Leader Name | Affiliation
1 VisionLabs Oleg Grinchuk Visionlabs.ai
2 WeOnlyLookOnce Ke-Yue Zhang Tencent Youtu Lab
3 CLFM Samuel Huang FaceMe
4 oldiron666 Zezheng Wang Kuaishou Technology
5 Reconova AI-LAB Mingmu Chen Reconova Technology
6 inspire Jiang Hao Bytedance Ltd.
7 Piercing Eyes Hyokong National University of Singapore
8 msxf_cvas Liang Gao, MaShang Consumer Finance Co.,Ltd
9 VIC_FACE Cheng Zhen Meituan
10 |DXM-DI-AI-CV-TEAM Weitai Hu Du Xiaoman Financial
Peter the Great St.
H fser Artem Petrov Petersburg Polytechnic University
12 VIPAI Yao Xiao Zhejiang University
13 reconova-ZJU Zhishan Li Zhejiang University
14 sama__cmb Yifan Chen Chinese Merchants Bank(CMB)
15 Super Yu He Technische Universitat Miinchen
16 ReadFace Zhijun Tong ReadFace
17 LsyL6 Dongxiao Li Zhejiang University
18 HighC Minzhe Huang  |Akuvox (Xiamen) Networks Co., Ltd.

ensure high resolution and imaging quality corresponding to modern mobile
devices. The original videos were not provided due to huge amount of data.
In order to decrease the size of the dataset, the organizers sampled every
tenth frame of each video and applied a fast face detector [92] to remove
most of the background information from the sampled video frames, thus the
final competition data consisted of coarsely pre-cropped facial images. Some
typical samples of pre-processed video frames in the HiFiMask dataset are
presented in Fig. 8.

In order to increase the difficulty of the competition and meet the real-
world deployment requirements, an 'open-set’ test protocol was utilized to
comprehensively evaluate the discriminative and generalization power of face
PAD algorithms. In other words, the training and development sets contained
only subsets of common mask types and operating scenarios, while there were
more general mask types and scenarios in the test set. Thus, the distribution
of test set was more complicated compared to the training and development
sets in terms of mask types, scenes, lighting, and imaging devices. Such ’open-
set’ protocol considers explicitly both ’seen’ and 'unseen’ domains as well as
mask types for evaluation, which is also more valuable from real-world face
PAD deployment point of view.

As shown in Table 19, every skin tone, part of mask types, such as trans-
parent and resin materials (1, 3), part of scenes, such as white light, outdoor
sunshine and motion blur (1, 4, 6), part of lighting conditions, such as normal,
bright, back and top (1, 3, 4, 6), and part of imaging devices, such as iPhone
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Fig. 8 Samples from the HiFiMask dataset [47]. The first row shows six kinds of
imaging sensors. The second row shows six kinds of appendages, of which E, H, S, W,
G, and B are the abbreviations for ’empty’, 'hat’, ’sunglasses’, 'wig’, ’glasses’, and 'messy
background’, respectively. The third row shows six kinds of illumination conditions, and
the fourth row represents six deployment scenarios.

Table 19 Statistical information for the protocols used in the ICCV2021 challenge.
Note that 1, 2 and 3 in the third column mean ’transparent’, 'plaster’ and ’resin’ masks,
respectively. The numbers in the fourth, fifth, and sixth columns are explained in Sec-
tion 2.5.1.

Subset |Subject|Mask type| Scene | Light Sensor |# Live num.|# Mask num.|# All num.
Train | 45 1&3 1&4&6(1&384&6|1&28&3&4 1,610 2,105 3,715
Dev 6 1&3 1&4&6(1&38&4&6|1&2&3&4 210 320 536
Test 24 1~3 1~6 1~6 1~7 4,335 13,027 17,362

11, iPhone X, MI10, P40 (1, 2, 3, 4) are included in the training and devel-
opment subsets. All skin tones, mask types, scenes, lighting conditions and
imaging devices are present in the test subset. For clarity, the organization
of the dataset and quantity of videos for each sub-protocol of the challenge
are shown in Table 19.

2.5.2 Evaluation protocol and Metrics

The challenge comprised two stages as follows:

Development phase: (April 19, 2021 — June 10, 2021). During the de-
velopment phase, the participants had access to the labelled training data and
unlabelled development data. The samples in the training set were labelled
with the bona fide, two types of masks (1, 3), three types of scenes (1, 4, 6),
four kinds of lighting conditions (1, 2, 4, 6) and four imaging sensors (1, 2,
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3, 4). The labels of the validation data were not provided to the participants
in development phase. Instead, participants could build their models on the
labelled training data and then submit their predictions on the development
data and receive immediate feedback via the competition leaderboard in the
CodaLab platform.

Final phase: (June 10, 2021 - June 20, 2021 ). During the final phase, the
labels for the development set were also made available to the participants and
the unlabelled test set was also released. The competitors had to make their
predictions on the test samples and upload their solutions to the challenge
platform. The organizers did then rerun the best-performing algorithms, and
the final ranking of the participants was obtained based from the verified
results on the test data. To further facilitate the outcome and findings of the
competition to the face PAD community, the best-performing teams were
encouraged to make their source code publicly available and provide fact
sheets describing their solutions.

Evaluation metrics: Similarly to the previous two competitions (i.e.,
CVPR2020 [43] and IJCB2021 LivDet-Face [58]), the ISO/IEC 30107-3 [32]
standardized metrics APCER, BPCER, and ACER were selected as the eval-
uation criteria, and the ACER was the leading evaluation criterion for rank-
ing the submitted systems in the ICCV2021 challenge. The ACER threshold
on the test set was determined based on the EER operating point on the
development data.

Table 20 Summary of the solutions in the ICCV2021 challenge [46]. 'DSFD’ and 'DBO’
denote dual shot face detector [41] and deep bilateral operator [81], respectively.

Team Name ‘ Pre-processing ‘ Backbone ‘Branch‘ Loss
VisionLabs ‘ DSFD detector ‘ EfficientNet-BO ‘ 6 ‘ BCE
‘WeOnlyLookOnce ‘ DSFD detector ‘ ResNet12 ‘ 2 ‘3-c1ass CE with label smoothing
CLFM ‘ Crop mouth region ‘ CDCN++ ‘ 1 ‘ BCE
Oldiron666 ‘ Whole face | Resnet6 (SimSiam) | 1 | BCE+MSE+Contrastive loss
Reconova-Al-Lab ‘ RetinaFace detector ‘ResNet50+YoLOV3—FPN‘ 3 ‘ BCE+Focal loss
inspire ‘ RetinaFace detector ‘ SE-ResNeXt101 ‘ 1 ‘ BCE+MSE+Contrastive loss
Piercing Eye ‘ Face detection ‘ CDCN ‘ 2 ‘ Depth regression+BCE
msxf cvas ‘Face detectionJralignment‘ ResNet34 ‘ 1 ‘ 4-class CE loss
VIC FACE ‘ Face detection ‘ CDCN with DBO ‘ 1 ‘ Depth regression
DXM-DI-AI-CV-TEAM| | DepthNet | 1 | BCE with meta learning

2.5.3 Results and Discussion

In this section, we first summarize solutions in the 3D Mask face PAD chal-
lenge. Then, we provide our result analysis. Finally, the algorithms and the
challenge are discussed in general.
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Analysis of the solutions: Table 20 summarizes the solutions of the
most teams participating in the ICCV2021 challenge. The source code of the
winning team VisionLabs was released?® while the detailed descriptions as
well as the ablation studies of the top three ranked solutions can be found
in [6, 22, 31]. Different from all the previous competitions, the ICCV2021 chal-
lenge accepted only the results obtained with single (deep) model based sys-
tems, thus ensemble strategy with multiple models was explicitly prohibited.
As a result, several solutions (e.g., the teams VisionLabs, WeOnlyLookOnce,
Reconova-Al-Lab and Piercing Eye) developed multi-branch architectures,
which aimed at capturing more diverse PAD-specific feature representations.
Also, team VIC FACE proposed a novel architecture in its solution, which
integrated the deep bilateral operator in the original CDCN [85] in order to
learn more intrinsic features via aggregating multi-level bilateral macro and
micro-texture information. Most of the teams adopted DSFD [41] or Reti-
naFace [15] detector for pre-processing to localize more fine-grained facial
region and to filter out partial low-quality face mask attacks. The teams con-
sidered face PAD mainly as a binary classification task using BCE loss or
as a depth regression problem, but two teams (i.e., WeOnlyLookOnce and
msxf cvas) also forced the models to learn more mask type-aware features via
fine-grained multiple class CE loss.

Result analysis: The results and ranking of the top 18 teams are shown
in Table 21. The ACER performance of the top three teams were relatively
close (within < 3.3%). One major reason behind this is that the original
pre-processed images in the HiFiMask dataset correspond to very coarsely
cropped facial regions, including also outliers (i.e., non-facial samples), due
to the limited accuracy of the used efficient face detector [92]. Thus, the
additional pre-processing with DSFD and mouth region cropping was very
beneficial in removing the outlier samples affecting negatively the training
of deep models and focusing on the details in the actual facial information
discriminating attacks from bona fide samples. The team VisionLabs achieved
the best BPCER = 2.33% with only 101 FN samples, while WeOnlyLookOnce
had the lowest APCER = 1.858% with 242 FP samples, indicating that the
features from multiple facial region based branches and vanilla/CDC branches
benefited the spoof cue representations. Moreover, the ACER performance of
all the teams were evenly distributed ranging from 3% to 10%, which not only
indicates the rationality and selectivity of the 3D mask face PAD challenge
but also demonstrated the value of the HiFiMask dataset for future face PAD
studies.

Discussion: Some general observations on 3D mask face attack detection
can be concluded based on findings of the ICCV2021 competition: 1) the
accurate facial localization and subregion information was very beneficial, fo-
cusing on the actual discriminative local facial details and avoiding learning
and extraction of irrelevant features for face PAD, and 2) multi-branch-based

29 https://github.com/AlexanderParkin/chalearn_3d_hifi
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Table 21 The final results and team rankings of the ICCV2021 challenge [46]. The best
results are shown in bold.

Team Name FP FN APCER(%) BPCER(%) ACER(%) Rank
VisionLabs 492 101 3.777 2.330 3.053 1
WeOnlyLookOnce 242 193  1.858 4.452 3155 2
CLFM 483 118  3.708 2.722 3215 3
oldiron666 644 115  4.944 2.653 3798 4
Reconova-AI-LAB 277 276  2.126 6.367 4247 5
inspire 760 176 5.834 4.060 4947 6
Piercing Eyes 887 143  6.809 3.299 5054 7
msxf_cvas 752 232 5.773 5.352 5562 8
VIC_FACE 1152 104 8.843 2.399 5621 9
DXM-DI-AI-CV-TEAM 1100 181  8.444 4175 6.310 10
fscr 794 326 6.095 7.520 6.808 11
VIPAI 1038 268 7.968 6.182 7075 12
reconova-ZJU 1330 183 10.210 4.221 7216 13
sama_cmb 1549 188  11.891 4.337 8114 14
Super 780 454  5.988 10.473 8230 15
ReadFace 1556 202 11.944 4.660 8302 16
LsyL6 2031 138 15.591 3.183 9.387 17

HighC 1656 340  12.712 7.843 18

feature learning was a widely used framework by the participating teams,
which benefits from the shared low-level feature learning, capturing diverse
separated multi-branch features for generalized 3D mask description. How-
ever, there were still some shortcomings in the ICCV2021 challenge. The
fidelity and the collection of the 3D mask types were still limited. For in-
stance, the face mask in the fourth row and second column of Fig. 8 has a
very artificial appearance, while also more 3D attack types, such as paper
and silicone masks, and wax faces should be considered. Furthermore, only
every tenth frame for each video was provided. Such a low frame rate makes it
impossible to recover facial physiological signals and, consequently, to study
rPPG based 3D mask detection [48, 82], for instance.

3 Discussion

All the recent five competitions were successful in consolidating and bench-
marking the current state of the art in face PAD. In the following, we provide
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general observations and further discussion on the lessons learnt, model ar-
chitectures and potential future challenges.

3.1 General Observations

It is apparent that the used datasets and evaluation protocols, and also the
recent advances in the state of the art, reflect the trends in face PAD schemes
seen in the different contests. The algorithms proposed in the context of the
first two multi-modal competitions (i.e., CVPR2019 [45] and CVPR2020 [43])
exploited the evident visual cues that we humans can observe in the multi-
modal imaging data of the CASIA-SURF and CASIA-SURF CeFA datasets,
including plain/structural discrepancies in the depth modality, material sur-
face reflection differences in the NIR modality, and natural human movement
in the dynamic modality. Most of the solutions adopted exhausted model
and hyperparameter selection strategies for each modality and ensembling
the best combination of different modalities and models for robust PAD per-
formance in the multi-modal setting, i.e., TPR=99.8739%QFPR=10e-4 on
the CASIA-SURF and ACER = 1.02% on the CASIA-SURF CeFA datasets.
In these two competitions, the performance gains relied mostly on power-
ful deep models and ensembling strategies, while the essence of multi-modal
fusion was not truly explored. This gave, disappointingly, limited insight to
the multi-modal face PAD community, thus it is necessary to rethink these
kinds of multi-modal PAD settings, especially from the efficient fusion point
of view, in the upcoming benchmarks.

In the latest two competitions (i.e., IJCB2021 LivDet-Face [58] and
ICCV2021 [46]) on unimodal colour camera based face PAD, generalized and
intrinsic bona fide/attack cues and motion analysis were hardly used. The
proposed RGB data based features were overfitting in the training data, thus
generalized poorly to the test sets. One reason to the unsatisfactory perfor-
mance is that the test sets included more unseen high-fidelity 3D mask types
(e.g., plaster masks in the ICCV2021 [46] and high-quality 3D masks in the
1JCB2021 LivDet-Face [58] challenge). Although it was nice to see a diverse
set of advanced deep learning based systems and further improved versions of
the provided baseline method, it was a bit disappointing that entirely novel
generalized face PAD solutions, e.g., for zero-shot unseen attack (especially
against 3D masks) detection, were not proposed. The best performances in
the IJCB2021 LivDet-Face (ACER = 16.47%/13.81% for image/video tracks)
and the ICCV2021 (ACER = 3.053%) competitions were still limited, con-
sidering the needs of real-world use cases. However, as seen in the CVPR2020
competition [43], the major issues with domain shift and unseen PAs can be
at least partially alleviated by introducing depth and NIR sensors as these
additional modalities provide more accurate 3D shape information for 2D
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PAT detection and material reflection information for discriminating realistic
3D masks among other face artefacts from genuine human skin.

Unlike with the first three face PAD contests (i.e., IJCB2011 [5], ICB2013 [8]
and IJCB2017 [1]), it is interesting to observe that most of the participants
came from the industry in the competitions organized from 2019. For exam-
ple, the majority of the final participants (10 out of 13) of the CVPR2019
challenge [45] and (8 out of 11) of the unimodal track of the CVPR2020
challenge [43] came from industrial institutions. Also, in the most recent
ICCV2021 challenge [46], the majority (13 out of 18) of the final participants
came from companies, and the six top-performing teams were all from in-
dustry, indicating the steadily growing interest and need for practical and
reliable face PAD solutions in commercial AFR products.

3.2 Lessons Learnt

The competitions have given valuable lessons on designing databases and
test protocols, and competitions in general. In the CVPR2019 [45] and
ECCV2020 [94]) challenges, the best performances on the test data reached
TPR=99.8739%QFPR=10e-4 and TPR=100%QFPR=10e-6, respectively. How-
ever, the problem of face PAD has not been solved as the error rates (ACER
= 16.47%/13.81%) of the more recent IJCB2021 LivDet-Face competition
reveal that the state of the art in face anti-spoofing still suffers from sig-
nificant generalization issues in unknown operating conditions. Therefore, we
should also rethink the design of evaluation protocols in competitions like the
CVPR2019 [45] and ECCV2020 [94]) challenges. In the CVPR2019 challenge,
the provided validation data had similar distribution with the test data, and
the validation set was also allowed to be included in training the face PAD
models. Furthermore, the training, validation, and testing sets were split in
subject-disjoint manner in the ECCV2020 challenge when the domain co-
variates (e.g., biometric sensors and lighting conditions) and PAIs are too
similar. As a result, even using the off-the-shelf deep models with powerful
representation learning capacity, the participants could easily train an en-
semble of several overfitting models in these two competitions, performing
well not only on the training and validation sets but also on the test data. It
is necessary to mimic the requirements of real-world biometric applications
and to design and capture even more challenging and larger scale datasets
with unknown domains and unseen PA types in the test sets.

TPRQFPR was utilized in the CVPR2019 and ECCV2020 challenges as
the ranking criteria, while ACER was adopted in the three remaining re-
cent face PAD competitions. Despite being widely used in large-scale biomet-
ric evaluations (e.g., face recognition), TPRQFPR was first utilized in face
PAD competitions due to emerging larger scale face PAD datasets (e.g., the
CASIA-SURF [91] with 295,000 frame samples and CelebA-Spoof [93] with
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over 62,000 samples), which made the calculation of TPRQFPR=1e-4 or even
TPRQFPR=1e-6 possible. In most of the competitions (4 out of 5), the results
were reported using the mainstream metrics APCER, BPCER, and ACER
recommended in ISO/IEC 30107-3 standard [32]. However, the selection of
score threshold value for computing the ACER is worth discussing from
both contest and database design point of views. For the CVPR2019 [45],
CVPR2020 [43] and ICCV2021 [46] challenges, the ACERs for the test sets
were determined by the EER operating point on the validation sets, while in
the IJCB2021 LivDet-Face [58]) evaluation, the fixed threshold of 50 (nor-
malized output liveness scores from 0 to 100) was utilized directly, and it was
up to the participant how the scores were normalized within the valid range
of liveness scores. The latter evaluation method with fixed range of liveness
scores and ACER threshold sounds intuitive from interpretability and real-
world applications point of views, and adequate considering the lack of spe-
cific validation set in the IJCB2021 LivDet-Face competition. The former ap-
proach seems to be more reasonable but with some drawbacks. For instance,
significant discrepancies in performance can be observed among the ranked
solutions when comparing their results using the ROC related TPRQFPR
metrics and ACER. As an example, the second-best solution in terms of
ACER ranking in Table 9 performed poorly in terms of TPRQFPR=1e-3 in
Fig. 4. In practical biometric applications, the suitable operating point de-
pends highly on the application context. However, when looking at a single
ACER value, the misclassification rates between bona fide and attack classes
are often ignored, even though they are a crucial piece of information. A
method performing well in terms of ACER at the selected threshold might
suffer from severely imbalanced APCER/BPCER ratio. For instance, one of
the metrics might clamp to zero, while the other one can be relatively high. In
this case, the ACER fails to point out that the PAD system is able to detect
all attacks but rejects many bona fide samples (or vice versa), thus making
it impossible to judge its performance trade-off in the APCER and BPCER,
i.e., security and usability. Examples of such system behaviour can be seen
in Table 9, where the teams VisionLabs and Wgqtmac show 0.11%/5.33%
and 51.57%/0.66% APCER/BPCER ratios, respectively.

The CVPR2019 [45], CVPR2020 [43] and ICCV2021 [46] challenges can be
considered to be more transparent and fair due to the richer amount of pub-
licly available details about the participating teams and the best-performing
solutions, whereas the ECCV2020 [94] and 1JCB2021 LivDet-Face [58] con-
tests reported only limited information about the teams and evaluated solu-
tions. In general, competitions should encourage the participants to provide
authentic public details on the registered teams and open-source implemen-
tations, as well as detailed ablation analysis of the best-performing solutions.
The authentic team information is useful for avoiding malicious registration
situations where teams consisting of similar members from the same insti-
tution could make more submission entries, thus less cost of trial and er-
ror. The open-source codes and detailed ablation analysis would benefit the
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reproducibility of the solutions and mitigate the possibility of cheating by
using manually annotated competition test data. The best solution to pre-
vent “data peeking” would be to keep the evaluation set, including unseen
test conditions, inaccessible during algorithm development phase and to con-
duct independent (third-party) evaluations, in which the organizers run the
provided executables or source codes of the submitted systems on the com-
petition data. Another option would be to hide some “anchor” samples from
the development set (with randomized file names) in the evaluation data and
releasing the augmented test set once the development set scores have been
submitted (fixed), as done in the BTAS 2016 Speaker Anti-spoofing Competi-
tion [39]. The scores of the anchor videos could be used for checking whether
the scores for the development and test sets have been generated by the same
system. At minimum, the organizers should be able to retrain and rerun the
best-performing models following the official competition protocols to check
if the submitted solutions have been calibrated, or even trained, on the test
set, and determine the final ranking of the teams based on the verified results.

The ICCV2021 challenge [46] provided also a fairer evaluation of the pro-
posed algorithms per se by limiting the influence caused by differences in
the amount of training data and number of ensembled (deep) models. The
use of the same training data and a fixed number of models would be fairer
for comparing different algorithms. Otherwise, the competitions just assess
and ascertain how far the participants can push the face PAD performance
with “black-box” methods on the specific benchmark, while not gaining ac-
tual insight in the effectiveness of the different proposed algorithms under
the same conditions. For instance, we observed that the performance gains
with the best solutions of the CVPR2019 [45] and ECCV2020 [94] challenges
were largely due to the use of large-scale pretraining data and huge ensemble
models, respectively. Another option would be to conduct separate ablation
studies on the competition test data by evaluating the solutions trained on
the same training data in order to find out at least the impact of data, espe-
cially in the case of proprietary datasets.

The CASIA-SURF [90, 91] and the CASIA-SURF CeFA datasets [44] used
in the CVPR2019 [45] and CVPR2020 [43] challenges, respectively, provide
pre-cropped and aligned facial images for each modality. Furthermore, the
background information has been pixel-wise masked out to mitigate the effect
of different face detection and alignment methods and limit the problem of
face PAD to the actual facial information instead of exploiting the domain-
specific contextual cues. The findings of the ICCV2021 challenge [46] suggest,
however, that the use of proper pre-processing (e.g., face or facial attribute
localization) can, in fact, significantly improve the PAD performance. The
best-performing teams used additional pre-processing steps to focus on the
actual discriminative facial details and specific subregion information and
to avoid learning and extraction of irrelevant features for face PAD. Data
pre-processing needs definitely further attention in future because it is an
understudied subject in face PAD research and an important component in
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complete face PAD solutions used in real-world AFR applications. While
artificially restricting the original facial images and videos into pre-cropped
bounding boxes or pixel-wise masked regions mitigates the issues related
to sharing and working with huge datasets, and exploiting dataset-specific
contextual cues for better PAD performance, the heavily pre-processed data
can also limit the novelty of proposed solutions and usability of the dataset
for experimental analysis during the competitions and, more importantly,
in future studies in the research field. Therefore, the research community
needs to find means for providing large-scale face PAD datasets also with
unprocessed facial images and videos in order to be able to evaluate complete
face PAD solutions and conduct comprehensive ablation studies.

Table 22 ACER (%) performance comparison of the single model architectures used
in the CVPR2019 [45], CVPR2020 [43], IJCB2021 LivDet-Face [58], and ICCV2021
competitions [46].

CVPR2019 challenge| CVPR2020 challenge |[[JCB2021 LivDet-Face|ICCV2021 challenge

Model multi-modal multi-modal ‘ unimodal unimodal unimodal
VGG16 [65] | 0.6255 \ - | - ] - \ -
ResNet18 [26] | 2.4223 \ - | 26.12 | - \ -
ResNet34 [26] | 1.1107 | 1es | - | - | 5.562
ResNet101 [26] | - | - | 928 | - \ -
ResNeXt101 [78] | 0.6812 \ - | - ] - \ -
SE-ResNeXt101 [29]| 0.0985 \ - | - ] - \ 4.947
DenseNet121 [30] ‘ 0.0516 ‘ - ‘ - ‘ - ‘ -
Inception [68] | 1.6873 | - | - | - | -
ShuffleNet-V2 [51] | 0.3855 \ - | - ] - \ -
EfficientNet-B0 [70] ‘ - ‘ - ‘ - ‘ - ‘ 3.053
DepthNet [49] | - | 58 | - | - | 6.31
CDCN [87] \ - | 102 | 4.84 | 18.71 \ 5.054
CDCN++ [87] | - \ - | - ] - \ 3.215

3.3 Summary on Model Architectures

Model architectures play a vital role in extracting PAD-specific feature repre-
sentations, thus it is worth investigating how to select suitable deep models for
unimodal and multi-modal face PAD in light of the competition results. Ta-
ble 22 shows the performance of the methods based on a single model architec-
ture (i.e., without ensemble models) in the CVPR2019 [45], CVPR2020 [43],
IJCB2021 LivDet-Face [58], and ICCV2021 competitions [46]. In the multi-
modal challenges (see the second and third columns in Table 22), the meth-



42 Zitong Yu, Jukka Komulainen, Xiaobai Li and Guoying Zhao

ods based on the DenseNet121 and CDCN backbone models achieved the
best results. Compared with the ResNet family (e.g., ResNet18, ResNet34,
and ResNeXt101), the DenseNet121 extracts denser contextual semantic fea-
tures, which benefits from the hidden feature representations between the
different modalities. The generic backbones supervised by BCE loss focus
on high-level semantic feature representations, while the CDCN with central
difference convolution and multi-level fusion module is based on pixel-wise
supervision, aiming at capturing more fine-grained disparities in the intrinsic
fidelity characteristics between bona fide samples and face artefacts. In the
unimodal challenges, the EfficientNet-BO and CDCN performed the best in
the IJCB2021 LivDet-Face and ICCV2021 challenges, respectively. It is in-
teresting to notice that both of these two architectures have been discovered
using automatic neural architecture search (NAS) [16], indicating the promis-
ing potential of NAS in searching optimal task-aware architectures also for
face PAD. Despite the differences in hyperparameter settings, the architec-
tures highlighted in bold in Table 22 can be recommended and treated as
valuable prior knowledge in selecting models for the upcoming unimodal and
multi-modal face PAD challenges.

In the ECCV2020 and 1JCB2021 LivDet-Face competitions, most of the
top teams considered ensemble models combining different architectures. For
instance, the best-performing solution in the ECCV2020 challenge (see Ta-
ble 13) consists of five kinds of models (i.e., FOCUS, AENet, ResNet, Attack
type, Noise Print) while 12 different models (e.g., DeepPixBis, ResNeXt, etc.)
are combined in the winning solution of the IJCB2021 LivDet-Face com-
petition (see Table 15). It can be concluded that ensemble strategy works
the best in these kinds of competition settings, but the contribution of each
model on the final performance remains unclear due to lack of proper ablation
studies. However, one common feature among these ensemble solutions com-
bining mixed architectures is that both generic, high-level backbones (e.g.,
ResNet [26] and ResNeXt [78]) with BCE loss and PAD-specific architec-
tures (e.g., DeepPixBis [21] and AENet [93]) with pixel-wise supervision are
used. Thus, the feature representations from these two different approaches
seem to compatible and complementary towards more generalized face PAD
solutions.

3.4 Future Challenges

The test cases in the current competitions measuring the generalization across
different covariates are still rather limited. Especially, the domain diversity
should be increased, as the samples in most (4 out of 5) of the competitions
were recorded in indoor office locations with no more than three ethnicities.
Regarding the PA species, recently introduced challenging partial face at-
tacks (e.g., half 3D mask, makeup, and tattoo) have not been yet considered
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in face PAD contests. Another one issue is the imbalanced long-tailed data
distribution across different PAs, where some more challenging attack types
(e.g., high-fidelity masks) have usually been represented only with a few sam-
ples due to their high manufacturing costs. A large-scale test set 'in the wild’
with diverse domain conditions and PA types, as well as more balanced data
distribution, will be eventually needed to achieve more realistic evaluation
settings.

Most of the existing face PAD competitions have not considered the effi-
ciency or costs of the proposed solutions, as no constraints on either model
size and number of models have been given. As a result, the best-performing
algorithms have been usually ensembles of several deep models, which gives
insight how robust PAD performance can be reached with the current state-
of-the-art methods on the competition data. However, blindly pushing to
maximum detection performance without any restrictions encourages the par-
ticipants to exploit and combine off-the-shelf components instead of trying
to invent truly novel and effective solutions that could be also deployed in
real-world applications on mobile and embedded platforms with restricted
resources. Although the organizers of the latest ICCV2021 challenge [46] ex-
plicitly informed that results obtained with fusion of deep models are re-
jected and the computational cost of a single model should be less than 100G
FLOPs, there are still no evaluation metrics for measuring the trade-off be-
tween accuracy and efficiency.

Despite two multi-modal face PAD competitions have been already con-
ducted, it is a bit disappointing that only few solutions pursued to introduce
new kinds of advanced multi-modal fusion algorithms. Many major manufac-
turers have already included multi-modal camera systems into their products,
including mobile devices and laptops, thus there is an urgent need to explore
novel multi-modal fusion algorithms instead of just ensembling models with
different modalities. Furthermore, not all the modalities are always available,
as the selection of multi-modal data sources depends on the deployment sce-
nario in question. Thus, it would be useful to investigate performance in
settings where a model is trained on multiple modalities but evaluated on
partial or arbitrary combinations of the modalities. Among emerging imag-
ing technologies, depth and NIR cameras have been already considered in the
two multi-modal competitions, thus it would be interesting to include also
more advanced sensors, such as short-wave infrared (SWIR) [27]) or even
hyperspectral imaging [34], in the upcoming collective evaluations.

Apart from conventional PAs, two kinds of physical adversarial attacks
(i.e., recognition and PA aware) could be considered for generic face PAD.
For example, special printed eyeglasses [63], hats [37] and stickers [23] syn-
thesized by adversarial generators have been demonstrated to effectively cir-
cumvent deep learning based AFR systems when worn by an attacker. Be-
sides recognition-aware adversarial attacks, adversarial print and replay at-
tacks [88] with specific perturbation injected before physical broadcast have
been developed to fool face PAD systems. Therefore, it can be expected to
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be necessary to consider a diverse set of physical adversarial attacks in future
competitions. In addition to PAs, there are many vicious digital manipula-
tion attacks (e.g., “deepfakes” [61]) that can be applied against AFR systems.
Despite the differences in generation techniques and visual quality, some of
these attacks still have coherent properties and artefacts. In [12], a unified
digital and physical face attack detection framework is proposed to learn joint
representations for coherent attacks. Therefore, another interesting challenge
to tackle in upcoming contests assessing the robustness of face biometric
systems would be to simultaneously detect both digital and physical attacks.

4 Conclusions

Competitions play a vital role in consolidating the recent trends and assess-
ing the state of the art in face PAD. This chapter introduced the design and
results of the five latest international competitions on unimodal and multi-
modal face PAD organized from 2019 until 2021. These contests have been
important milestones in advancing the research on face PAD to the next
level, as each competition has offered new challenges to the research commu-
nity and resulted in novel countermeasures and new insight. The industrial
participants have dominated most of these competitions, which indicates the
strong need for robust anti-spoofing solutions in real-world applications. The
first two face PAD competitions (i.e., CVPR2019 [45] and CVPR2020 [43])
provided initial assessments of the state of the art in multi-modal face PAD
algorithms under mainstream PAs in diverse conditions, while the three most
recent face PAD competitions (i.e., ECCV2020 [94], IJCB2021 LivDet-Face
[58] and ICCV2021 [46]) benchmarked conventional colour (RGB) camera
based PAD algorithms on larger scale datasets, challenging unseen attacks,
and high-quality 3D mask attacks, respectively. Although several solutions
proposed in the first two multi-modal competitions achieved satisfying PAD
performance, more comprehensive multi-modal datasets and evaluation pro-
tocols on generalized PAD are still needed, especially considering the sit-
uation in which one or more modalities are missing in the test phase. In
contrast, none of the systems proposed in the context of the latest two uni-
modal competitions managed to achieve satisfying PAD performance under
unseen attacks detection in unknown operating conditions. Thus, more di-
verse, larger scale unimodal face PAD datasets are still needed to develop
and evaluate more robust learning based algorithms.
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CNN: Convolutional Neural Network, 16
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FDR: Fisher Discriminant Ratio, 28
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FPR: False Positive Rate, 8
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NIR: Near-Infrared, 2

PA: Presentation Attack, 2
PAD: Presentation Attack Detection, 2
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