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Chapter 1

Contact lens detection in iris images

Jukka Komulainen, Abdenour Hadid and Matti Pietikäinen

Iris texture provides the means for extremely accurate uni-modal person identifica-

tion. However, the accuracy of iris based biometric systems is sensitive to the pres-

ence of contact lenses in acquired sample images. This is especially true in the case

of textured (cosmetic) contact lenses that can be effectively used to obscure the orig-

inal iris texture of a subject and consequently to perform presentation attacks. Since

also transparent contact lenses can degrade matching rates, automatic detection and

classification of different contact lens types is needed in order to improve the robust-

ness of iris based biometric systems. This chapter introduces the problem of contact

lens detection with particular focus on cosmetic contact lenses. The state of the art is

analysed thoroughly and a case study on generalised textured contact lens detection

is provided. The potential future research directions are also discussed.

1.1 Introduction

Among different biometric traits, iris is considered to be (one of) the most reliable

and accurate biometric trait for person identification because iris patterns provide

rich texture that is highly discriminative between individuals and stable during age-

ing of subjects [14]. Iris recognition is being increasingly deployed in large-scale

applications requiring identity management, including border and access control,

banking, mobile authentication and national identification programs for e.g. voter

registration and social benefits. Probably the best example of a large-scale project

was initiated by Unique Identification Authority of India1 (UIDAI) that is imple-

menting the scheme of providing a unique ID (AADHAAR number) for every Indian

resident. So far the biometric samples of already over 1 billion citizens of 1.2 billion

have been collected in the form of fingerprint, face and iris patterns.

In controlled environments, iris recognition is indeed extremely accurate but re-

cent studies suggest that the iris texture is affected by covariates like pupil dilation

[30] and sensor interoperability [3, 11]. Presence of both textured and transparent

soft contact lenses is a another issue that may cause severe degradation in iris recog-

nition performance in terms of false non-match rate (FNMR) [4, 5, 35, 56]. The

negative effect of contact lenses can be explained with general factors that can ob-

1http://uidai.gov.in
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Figure 1.1: Cropped iris images from the Notre Dame Contact Lens Detection 2013

(NDCLD’13) dataset [22] highlighting the variation in texture patterns between one

genuine iris and three textured lens manufacturers, Cooper Vision, Johnson & John-

son and Ciba Vision, respectively. Reprinted with permission from [36] c© 2014

IEEE.

scure the original iris texture like: (1) change in the optical properties of the eye, (2)

presence of deliberate synthetic texture, and (3) small movement of the contact lens

on the surface of the eye between different acquisition times, e.g. enrollment and

authentication [48].

Commercial iris recognition systems operate on eye images acquired using ac-

tive near-infrared (NIR) illumination almost without an exception. The iris texture

is rather hard to distinguish in conventional colour images, while rich texture can be

observed in NIR images. Contact lenses with printed colour texture are designed for

reshaping the appearance (color and texture) of the iris tailored to wearer’s prefer-

ences, e.g. transforming one’s apparent eye colour from brown to blue, or from dark

to light, thus they are also referred as cosmetic contact lenses. The change in colour

and texture of the iris is due to a circular band on the contact lens containing pattern

of pigment that is also visible in NIR wavelengths (see Figure 1.1). Typically, the

observed iris texture is a mixture of the lens and original iris texture because the

synthetic texture band (1) is not fully opaque when the original genuine iris texture

is partly visible through it, and (2) might not cover the whole iris region when a

separate band of original iris texture is visible (see Figure 1.1) [8]. Still, it has been

demonstrated that the presence of textured contact lenses yields to huge increase in

FNMR when the gallery iris images of subjects with and without transparent contact

lenses are compared with probe images of the same subjects with cosmetic lenses

[4, 5, 35, 56].

Textured contact lenses are indeed effective for obfuscating one’s true biomet-

ric trait in order to avoid positive identification to one’s previously enrolled identity

because one is on a watchlist. This kind of presentation attack is a serious problem

in real-world applications. For instance, iris recognition is utilised for checking if a

person is on watch list of people who have been previously expelled from the United

Arab Emirates (UAE) [1], thus cosmetic lenses could be potentially used to re-enter

the country. In general, it is unlikely that cosmetic lenses would be used for other

kinds of presentation attacks like targeted impersonation or creating a fake identity

for e.g. extra social benefits. Soft contact lenses tend to move on the surface of the

eye and can be put in differently, thus the iris texture of a subject wearing exactly
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Figure 1.2: Example of images of textured lenses from the NDCLD’13 benchmark

dataset [22] illustrating the appearance variation on the same eye at different acqui-

sition times due to small movement of the lens .

the same cosmetic lens cannot be matched between different acquisition times (see

Figure 1.2) [4, 5, 35, 56]. However, soft contact lenses can be designed to maintain

a specific orientation after eye blinking or any other movement by making it to be

heavier at the bottom [5]. In theory, there exist no technical limitations of printing

fully opaque cosmetic contact lenses with iris texture of a targeted person and wear-

ing the customized lenses to successfully masquerade as someone else and thereby

gaining illegitimate access and advantages [5, 8, 32]. However, there are no known

real-world examples of successful presentation attack of this kind [8].

Textured contact lenses should be rejected before enrolment or during verifica-

tion by labelling them as ”failure to process”, for instance [56]. The presence of

cosmetic contact lenses is quite easy to reveal by manual visual inspection espe-

cially if the lens is not properly inserted or if the pure lens and original iris texture

are otherwise separately observed [32]. However, detection of well-aligned cosmetic

lenses of some printing patterns can be difficult using only the human eye. Further-

more, while manual inspection is feasible to perform e.g. when enrolling a person

to national ID system, the same does not hold for practical applications like auto-

mated border control. Automatic contact lens detection would be not only faster

but potentially also more accurate than manual inspection [32]. The commercial

iris recognition systems by IrisGuard are promoted to have a cosmetic contact lens

detection feature2 but no objective security evaluation on their robustness has been

conducted [20].

Transparent (non-cosmetic) contact lenses can be considered to consist of two

main categories based on the used material: rigid gas permeable (RGP) contact

lenses and soft contact lenses [23]. The RGP lenses are well-known to degrade

iris match quality because the whole lens fits within the iris region and thereby the

boundary of the lens causes a severe circular artefact in the iris texture [5]. Daug-

man’s iris recognition algorithm [14] is the basis for many iris based biometric sys-

2http://irisguard.com/userfiles/file/Countermeasures.pdf
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tems. Assuming that its improved version [17, 18] is indeed able to detect and mask

out these boundary artefacts, it seems likely that also many commercial iris recogni-

tion algorithms account for the presence of hard contact lenses [5]. In contrast, soft

lenses, the most popular type of contacts, are much larger in diameter, thus it has

been generally assumed for a long time that they do not substantially degrade the

accuracy of iris recognition systems. However, the recent studies [4, 5, 35, 56] have

turned out this belief to be false.

Figure 1.3: Sample images from the NDCLD’13 dataset [22] illustrating typical soft

lens artefacts, e.g. circular lens boundary in the sclera region and ring-like outline

within the iris region.

Unlike cosmetic lenses, clear soft prescription lenses are not intentionally used

for altering the original iris texture. Still, they must have some effect on the observed

iris texture because they are designed to change the optical properties of the eye in or-

der to correct eyesight [56]. For instance, the findings presented by Thompson et al.

[54] imply that differences in iris curvature degrade matching ability of iris recogni-

tion systems. Some contact lenses can indeed yield to a ring-like artefact noticeable

in the iris region (see Figure 1.3) [5]. As an example, toric lenses have additional

curvature for correcting astigmatism in addition to ”near-” or ”far-sightedness curva-

ture”, which causes the circular outlines on the iris texture [5]. Occasionally, the lens

boundary might be overlapping with the iris region like in the case of RGP lenses

due to misplacement. Similarly to cosmetic lenses, clear lenses may contain also

visible markings on them. For instance, toric lenses must maintain a specific ori-

entation and need to be inserted correctly for proper vision correction, thus special

visible markings are used to aid the insertion [5]. Some lenses may have even large

visible artefacts, like a logo or numbers, on the iris region [5]. Also the alignment of

transparent contact lenses can be different on the surface of the eye, thus the nature

and location of the potential iris texture artefacts is likely to vary between different

acquisition times.

One could try to locate the iris texture artefacts due to e.g. lens boundaries or

change in optical properties and mask them appropriately [5] or apply specific im-

age correction techniques for the contact lens artefacts in order to increase the ro-

bustness of iris recognition to transparent lenses. The degradation in performance
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due to clear lenses can be potentially mitigated already without applying any sort of

dedicated pre-processing before matching. The results by Baker et al. [5] suggest

that false reject rates are generally lower for the case in which gallery images consist

of subjects without (clear) contact lenses and probe images of subjects with contact

lenses (none-soft) than rates for comparing contact lens images to contact lens im-

ages (soft-soft). Yadav et al. [56] conducted similar experiments but analysed the

effect between two different iris sensors as well. Their intra-sensor and inter-sensors

evaluations suggest that sensors can react very differently to soft contact lenses as the

verification rates for soft-soft comparisons are very high in the intra-sensor scenario

but drop dramatically in the inter-sensor case. In contrast, the use of natural iris in

gallery images is not that sensitive to unknown sensors also when soft contact lenses

are present in the probe images. The findings are somewhat consistent with the ones

presented by Baker et al.. Therefore, it may be advisable to require enrolment with-

out or, even better, with and without contact lenses to mitigate the effect of contact

lenses at the time of verification or recognition regardless if the subject is wearing

contact lenses or not [5].

There is indeed a need for a pre-processing stage consisting of robust automated

detection and classification of both textured and transparent soft contact lenses in

order to improve the robustness and reliability of iris recognition systems. This

chapter gives an overview on the state-of-the-art in contact lens detection with par-

ticular focus on software-based approaches and the problem of textured lenses. The

remainder of the chapter is organized as follows. First, Section 1.2 introduces the

prior works on hardware-based and software-based approaches for contact lens de-

tection. A case study on generalised textured contact lens detection is presented in

Section 1.3. In Section 1.4, the state-of-the-art in software-based contact lens de-

tection is thoroughly analysed. Finally, the conclusions and possible directions for

future research are discussed in Section 1.5.

1.2 Literature review on contact lens detection

This section provides an overview on the prior works in contact lens detection. Since

the presence of cosmetic contact lenses has been known to dramatically increase the

FNMR of iris recognition systems for a long time and poses a severe security threat,

the main research focus in the literature has been on textured contact lenses. Gradu-

ally, also the problem of transparent soft lenses has received more attention because

the recent studies [4, 5, 35, 56] have pointed out the benefits of detecting these types

of lenses as well. Following the historical aspect and evolution of contact lens de-

tection approaches, we introduce first methods developed particularly addressing the

issue of cosmetic contact lenses, while transparent lenses are included into to equa-

tion in the latter part of this section.
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1.2.1 Textured contact lens detection

Iris based biometric systems are prone to presentation attacks (traditionally referred

to as spoofing) aiming at false positive or negative identification like solutions using

any other biometric traits. Thus, dedicated countermeasures are needed in order to

provide secure authentication solutions. Presentation attack detection (PAD) tech-

niques can be broadly categorized into two groups based on the module in the bio-

metric system pipeline in which they are integrated: hardware-based (sensor-level)

and software-based (feature-level) methods [24]. Hardware-based methods intro-

duce some custom sensor into the biometric system that is designed particularly for

capturing the inherent differences between a valid living biometric trait and others.

The measured characteristics can be divided into three groups: 1) intrinsic proper-

ties, e.g. reflectance at specific wavelengths [9, 15, 40, 41, 44, 45], 2) involuntary

signals, e.g. pupillary unrest [13], or 3) voluntary or involuntary responses to exter-

nal stimuli (challenge-response), e.g. eye blink [43] or gaze [50], or pupillary light

reflex [7, 31, 46, 47]. Feature-level PAD techniques, on the other hand, are exploit-

ing only the same data that is used for the actual biometric purposes, i.e. captured

with the ”standard” acquisition device. Counterfeit irises can be presented in many

forms, including artificial glass and plastic eyes, photographs and videos, and printed

textured contact lenses, for instance. In the following, we concentrate only on meth-

ods that have been proposed for detecting textured contact lenses. For further details

on the advances in the field of iris PAD in general, interested readers are referred to

surveys by Sun and Tan [52] and Galbally and Gomez-Barrero [24], for instance.

Cosmetic contact lenses have received significant attention in the research com-

munity in the context of presentation attack detection because they are easy to use

in spoofing and are probably the most challenging ones to detect among different

iris artefacts. For instance, the results of Iris Liveness Detection Competition 2013

(LivDet-Iris 2013) [57] demonstrate that cosmetic lenses are indeed much more diffi-

cult to detect compared to iris paper printouts. One reason for this is that the artefact

is visible only within a very small part of the iris image, whereas usually the whole

periocular region corresponds to the artefact in the case of a print attack. Further-

more, a cosmetic contact lens might have a transparent region in the vicinity of the

pupil boundary (see Figure 1.1 and Figure 1.2), thus the real pupil and its pupil-

lary response, i.e. pupil dilation and contraction due to light stimulus is visible even

through the lens. Therefore, PAD methods relying solely on eye blink detection

[43], gaze estimation [50], Purkinje images [38, 39], pupillary unrest [13] or pupil-

lary light reflex [7, 31, 46, 47] cannot detect the presence of printed contact lenses.

Few works [31, 46, 47] proposed to solve the failure modes of biological ap-

proaches utilising stimulated pupillary light reflex. The printed iris texture is not

capable of being dilated and contracted like rubber band model along hippus move-

ment unlike genuine iris patterns. Thus, measurement of iris texture deformation

within the vicinity of pupil boundary can be exploited for detecting the presence of

textured contact lenses.

Daugman suggested in one of his pioneer works on iris recognition [15] that

multi-spectral reflectance analysis of eye region could be used for presentation at-
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tack detection. Concequently, multi-spectral measurements at specific wavelengths

have been applied in cosmetic contact lens detection by exploiting the light absorp-

tion ratio between the iris and the sclera [40, 41] and specific characteristics of con-

junctival vessels and iris textures [9]. In addition, a gray-scale image resulted from

gradient-based fusion of multiple images acquired at different wavelengths do not

present clear iris texture in the case of cosmetic contact lenses, unlike genuine iris

images [44, 45].

Natural iris can be considered roughly as a planar surface, whereas a textured

contact lens is more curved as it is lying on the eye surface. Two proof-of-concept

studies have suggested that 3D shape analysis of the observed iris can be indeed

utilised for cosmetic contact lens detection. Connell et al. [12] applied structured

light projection to measure the curvature of the observed iris, while Hughes and

Bowyer [32] used a stereo camera setup for recovering the 3D structure of the iris

surface for cosmetic contact lens detection.

While these kinds of hardware-based solutions may provide efficient and gen-

eralised means for presentation attack detection, they can be also rather impractical

due to unconventional imaging solutions that are not always possible deploy or in-

creased system complexity, or usability issues, e.g. time-consuming data acquisition,

additional interaction demands or unpleasant sudden active lighting stimuli. Further-

more, these kinds of techniques have been usually evaluated on limited datasets just

to demonstrate a proof of concept, like in [12, 32, 44], or, in the worst case, have not

been experimentally validated at all, like in [7, 47].

In the ideal case, textured contact lens detection would be performed entirely in

software, i.e. only by further processing the NIR images acquired with ”standard”

iris sensors. Software-based approaches have been the most popular technique in

cosmetic contact lens detection. Unsurprisingly, Daugman has been a pioneer in

this field as well. In [16], he demonstrated that Fourier domain can be used well

for describing periodic ”dot-matrix style” cosmetic lens printing iris patterns (see

Figure 1.1). However, defocus blur or the newer lens types with multiple layers of

printing smooth the Fourier response when no evident peaks cannot be found.

As seen in Figure 1.1, each printing process leaves its own characteristic signa-

ture (or artefacts) that can be detected by analysing the evident textural differences

between genuine iris and fake one. In general, genuine iris texture is rather smooth,

while the printed texture patterns of contact lenses are somewhat coarse despite the

more advanced printing techniques using e.g. multiple layers. Consequently, by far

the most common and promising approach has been to apply different local descrip-

tors for cosmetic contact lens detection, including gray level co-occurrence matrix

(GLCM) based features [28], a combination of GLCM features and iris-textons [55],

multi-resolution local binary patterns (LBP) [21, 29], weighted-LBP [59], scale-

invariant feature transform (SIFT) based hierarchical visual codebook [53], and bi-

narized statistical image features (BSIF) [20, 36]. Most of these works are reporting

excellent detection rates very close to 100% in controlled scenarios but novel printed

lens texture patterns (not seen during training) and sensor interoperability can yield

to dramatic decrease in system performance [22, 59]. In-depth analysis on these

issues will be provided in Section 1.3 and Section 1.4.
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Figure 1.4: Sample images from the NDCLD’13 dataset [22] illustrating the diffi-

culty of lens boundary detection, i.e. thin or virtually invisible boundary outlines

in sclera region due to specular reflections or otherwise inconsistent illumination,

defocus blur and lens placement.

1.2.2 Classification of contact lens type

The research on the problem of soft contact lenses is just in its infancy because their

negative effect on the accuracy of iris based biometric systems has not been discov-

ered until recently. To the best of our knowledge, only one work has proposed a

sensor-level approach to the problem. Kywe et al. [37] noticed that the variations in

temperature on the surface of the eye due to evaporation of water during blinking is

different for eyes with and without contact lenses. However, the proposed approach

requires a thermal camera and its detection accuracy is highly dependent on environ-

mental conditions like temperature and humidity. Thus, so far even hardware-based

methods have not been able to provide generalised solutions for robust detection of

transparent contact lenses.

Software-based detection of (non-cosmetic) soft contact lenses in NIR iris im-

ages in general is far more difficult compared to the case of textured lenses. The

appearance differences between no lens and soft lens iris images are very subtle and

highly dependent on the input image quality, for instance. Even by the human eye it

is generally hard to tell if there is a soft contact lens present on the observed image or
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Figure 1.5: No lens vs soft lens images of different eyes from the NDCLD’13 bench-

mark dataset [22] demonstrating the appearance similarity of no lens and soft lens

iris images in the right sclera region.

not unless the lens boundary is visible in the sclera region (see Figure 1.3). Erdogan

and Ross [23] proposed a method for detecting non-cosmetic contact lenses in NIR

ocular images by checking if the lens boundary can be found in the vicinity of the

segmented limbic boundary. They reported moderate overall classification accura-

cies between 66.8% and 76.0% because inconsistent illumination and defocus blur

lead to unsuccessful detections. As illustrated in Figure 1.4, the lens boundary can be

indeed hard to describe because its appearance can have significant variations or the

outline is virtually invisible due to acquisition conditions, e.g. specular reflections

or otherwise inconsistent illumination or defocus blur, or the alignment of the lens.

Another issue is that the similar ring-like artefacts can be observed in iris images of

a subject without a soft lens as seen in Figure 1.5.

Ideally, contact lens detection could be seen as a three-class problem of categoris-

ing acquired iris images as no lens, clear lens or cosmetic lens because the classifica-

tion of contact lens type is important in addition to detection [21, 22, 35, 56]. Since

the pioneer works in automated classification of contact lens type released public

benchmarks the Notre Dame Contact Lens Detection 2013 [22, 56] dataset and II-

ITD Contact Lens Iris Database [35, 56] consisting of NIR iris images of all the three

classes, an increasing trend has been to propose methods for distinguishing cosmetic

and transparent soft contact lenses from natural irises [26, 48, 51]. In general, these

kinds of approaches are fundamentally the same as the algorithms proposed in the

context of presentation attack detection as they are both based on extracting some

local feature description from the given iris image. The main differences are that

the sclera region is also utilised (lens boundary detection) and three-class classifica-

tion is performed instead of binary decisions. The state-of-the-art overall accuracy

across the three classes varies between 83% and 93% depending on the used iris sen-

sor. While the detection rates for textured lenses are again almost 100%, the rates

for no lens and non-cosmetic soft lenses are generally significantly lower and vary

from 79% to 96%, and from 76% to 84%, respectively [26]. However, again the
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overall performances drop in inter-sensor evaluations to 75% due to unsatisfying the

classification rates for natural iris and non-cosmetic soft contact lens images [48].

1.3 Case study: generalised software-based textured contact
lens detection

As seen in Section 1.2, many software-based approaches for detecting textured con-

tact lenses have been indeed proposed in the literature. Since most of the exist-

ing works are reporting astonishing correct classification results of almost 100% on

proprietary (e.g. [59]) and publicly available benchmark datasets (e.g. [53]), the

cosmetic lens detection appeared to be a solved problem. However, without few

exceptions, the effect of two important factors, namely sensor interoperability and

previously unseen cosmetic lens patterns, has been overlooked when validating the

robustness of the proposed algorithms. Thus, their generalisation capabilities beyond

laboratory conditions can be questioned. For instance, Zhang et al. [59] reported

overall classification rates between 97% and 99% when the training and test sets of

iris images were captured with the same sensors, while the performance decreased to

between 83% and 88% under cross-sensor evaluation, i.e. training and test sets were

captured with different iris sensors. Later, Doyle et al. [22] demonstrated that even

more dramatic drop in the detection accuracy may be observed if a cosmetic lens

with previously unseen printed texture is introduced to a lens detection algorithm.

In practice, biometric systems are installed in open environments, thus the as-

sumption of full prior knowledge of the used sensors and different cosmetic lens

patterns, that will be confronted in operation, is far from reasonable. Thus, there

is a need for generalised textured lens detection algorithms that can operate under

unpredictable conditions. Possible directions towards more robust and generalised

software-based solutions include: (1) designing novel feature representations having

milder assumptions about the cosmetic contact lens patterns, (2) augmenting training

data of counterfeit iris patterns online like databases of anti-virus software [53], (3)

using a combination of several (lens-specific) methods, and (4) modelling variability

in the mixture of genuine and fake iris feature representations.

One important question is also whether the cosmetic contact lens detection (or

PAD in general) should be considered as two-class or one-class problem. While

huge amount of genuine iris data is available for training natural iris model, the same

does not hold for counterfeit irises because novel brands with previously unseen cos-

metic lens patterns will be eventually experienced in operation. Since it is practically

impossible to cover every existing printing pattern in training datasets, ideally, the

problem can be solved using one-class classifiers for modelling the variations of the

only fully known class (genuine). This kind of approach has shown already to be

promising direction in speaker verification PAD [2].

In any case, all aforementioned main aspects towards generalised textured lens

detection can be considered in both, fundamentally different, principles of one-class

and two-class modelling. For instance, in feature design, one needs to figure out how

to emphasize and capture the variations characteristic to only genuine iris texture or

the differences between genuine iris texture and fake one without exploiting the prior
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knowledge of known printing signatures too much. Furthermore, where a up-to-date

database of known lens printing patterns is useful when upgrading two-class models,

it is also necessary for tuning the hyperparameters of the one-class model.

Eventually, the success in real-world applications is mostly dependent on how

robust the applied feature representation is. The varying nature of different lens

printing techniques makes the problem indeed difficult to solve. First, the market of

textured contact lenses is growing, thus the number of texture patterns increases at

the same time. Already the three example images seen in Figure 1.1 demonstrate how

dissimilar the printing signatures of various suppliers can be. Generalised texture

representation of various (unseen) printing techniques itself is a challenging problem

but the semi-transparent nature of cosmetic contact lenses makes the problem even

less trivial as the natural iris texture may be at least partly observed. In the following,

we introduce our work [36] on designing a more generalised (natural) iris texture

representation for detecting the presence of cosmetic contact lenses.

Figure 1.6: Comparison of between traditional polar and the proposed geometric

normalization techniques highlighting the distorted texture patterns of Ciba Vision

lenses and occlusion in polar domain. The dashed lines represent the omitted area

because of possible occlusion due to eyelashes and eyelids. Reprinted with permis-

sion from [36] c© 2014 IEEE.

1.3.1 Pre-processing

Iris image pre-processing, including localisation, geometric normalization and oc-

clusion handling due to eyelashes and eyelids, is as important part of a counterfeit iris

detection pipeline as the actual texture feature extraction. Traditionally iris images

are normalized into polar coordinate system also when detecting counterfeit irises

[21, 28, 29, 56, 53, 55]. However, the geometric transformation causes severe dis-

tortion on the regular lens texture patterns. In addition, valuable details are probably

lost due to interpolation when mapping the ring-shaped iris region into rectangular

image. As seen in Figure 1.6, the printing signatures are far less evident in the re-

sulting polar coordinate image as opposed to the original Cartesian domain, hence

probably also harder to describe. While the polar coordinate system is convenient

for finding distinctive features across different individuals and matching purposes,
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it might be unsuitable for creating generalised feature representation for cosmetic

contact lens detection.

In order to preserve the regularity of the lens patterns, we compute the iris texture

description in the original image space by normalizing the square bounding box of

the limbic boundary into N×N pixels. We omit all pixels belonging to the pupil and

sclera region using the pupillary boundary and the limbic boundary to avoiding the

effect of irrelevant information that is not part of iris texture (see Figure 1.6). Fur-

thermore, we take the possible occlusion due to eyelashes and eyelids into account

and further refine our region of interest (ROI) to focus on the lower part of the iris,

i.e. the upper limit of the pupillary boundary acts also as the upper limit for the ROI.

1.3.2 Texture description

For describing the inherent textural differences between natural and synthetic iris tex-

ture, we adopted binarized statistical image features (BSIF) [34] because they have

shown potential tolerance to image degradations appearing in practice, e.g. rotation

and blur. More importantly, the BSIF filters are derived from statistics of natural im-

ages, thus they are probably suitable for emphasising the textural properties of those

characteristic to natural iris images and not synthetic ones.

Many local descriptors, such as LBP [42], compute the statistics of labels for pix-

els in local neighbourhoods by first convolving the image with a set of linear filters

and then quantizing the filter responses. The bits in the resulting code string cor-

respond to binarized responses of different filters. Kannala & Rahtu [34] proposed

to learn the filters by utilising statistics of natural images instead of using manually

predefined heuristic code constructions.

Given an image patch X of size l× l pixels and a linear filter Wi of the same size,

the filter response si is obtained by:

si = ∑
u,v

Wi(u,v)X(u,v) = wT
i x, (1.1)

where vector notation is introduced in the latter stage, i.e. the vectors w and x contain

the pixels of Wi and X . The binarized bi feature is then obtained by setting bi = 1 if

si > 0 and bi = 0 otherwise. Given n linear filters the bit strings for all image patches

of size l × l, surrounding each pixel of an image, can be computed conveniently

by n convolutions. Like in the case of LBP, the properties of the iris texture are

represented using histograms of BSIF values extracted over normalized and masked

iris image.

The filters Wi are obtained using independent component analysis (ICA) by max-

imising the statistical independence of si. In general, this approach has shown to

produce good features for image processing [33]. Furthermore, the independence

of si provides justification for the independent quantization of the elements of the

response vector s [34]. Thus, costly vector quantization, used e.g. in [53], is not

needed in this case for obtaining a discrete texton vocabulary.
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Figure 1.7: BSIF filters size of 7 × 7 learned from natural images. Reprinted with

permission from [36] c© 2014 IEEE.

BSIF descriptor has two parameters: the filter size l and the length n of the

bit string (i.e. number of learned filters). We used the set of filters3 provided by

the authors of [34]. The filters Wi with different choices of parameter values were

learned using 50000 patches that were randomly sampled from a set of 13 natural

images provided in [33]. The BSIF filters used in the proposed iris description can

be seen in Figure 1.7.

1.3.3 Experimental analysis

Next, we conduct extensive set of experiments in order to compare the performance

of different feature representations for textured contact lens detection, including iris

image pre-processing and texture features. The main purpose of our experimental

analysis is to evaluate the generalisation capability of the different algorithms un-

der two varying conditions, cosmetic lenses with previously unseen texture patterns

and unknown iris sensors. For performance evaluation, we considered the extended

version of the Notre Dame Contact Lens Detection 2013 (NDCLD’13) benchmark

dataset [22] as it provides the means for evaluating the effect of both of these vari-

ables separately, unlike many other databases.

1.3.3.1 Experimental setup

The NDCLD’13 database consists of iris images of subjects without contact lenses,

with soft and textured contact lenses, acquired under near-infrared illumination. The

database can be used for evaluating methods that try to solve a three-class problem of

categorising iris images as no lens, clear lens or cosmetic lens [21]. In the following,

we focus on two-class problem considering iris images without contact lenses and

with clear lenses as genuine samples, whereas the iris images with cosmetic lenses

are regarded as artefact samples.

3http://www.ee.oulu.fi/∼jkannala/bsif/bsif.html
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Train Test

Subset Genuine Fake Genuine Fake

ND I 2000 1000 800 400

ND II 400 200 200 100

Cooper 2160 2160 667 667

J & J 1955 1955 872 872

Ciba 1539 1539 1288 1288

Table 1.1: Composition of the different subsets of the NDCLD’13 database.

Reprinted with permission from [36] c© 2014 IEEE.

The updated NDCLD’13 database contains three subsets of iris images. The

first subset (ND I) consists of a training set of 3000 samples and a test set of 1200

samples acquired using an LG 4000 iris camera. Second subset (ND II) contains 600

for training images and 300 images for testing acquired with an IrisGuard AD100

iris sensor. Both datasets are balanced across the three different categories of iris

images. Moreover, the iris images are divided into ten subject-disjoint and class-

balanced folds for training and tuning the algorithms. Although the number of iris

images in training and test sets between ND I and ND II is a bit unbalanced, the

consistent composition enables fair cross-sensor experiments.

The third subset (ND III) is an extended set of ND I because it contains constant

set of no lens and soft lens images from ND I but, more importantly, 1427 addi-

tional iris images with cosmetic lenses acquired with the LG4000 camera. ND III

can be used for testing how well a textured contact lens detection algorithm is able

to perform when an unseen cosmetic texture pattern is shown because it provides

leave-one-out protocol across the three types of cosmetic contact lenses by Cooper

Vision4, Johnson & Johnson5 and Ciba Vision6 (667, 872 and 1288 counterfeit iris

images, respectively). Table 1.1 summarizes the composition of different subsets in

the NDCLD’13 database.

Since the focus of our experiments is on exploring the generalisation capabilities

of textured lens detection algorithms, we utilise the segmentation information in-

cluded in the NDCLD’13 dataset that provides center and radius for circles defining

the pupillary boundary and the limbic boundary. The average radius of the limbic

boundary in the provided segmentation data is bit over 130 pixels, thus the bounding

box of the proposed Cartesian iris image normalization is set to 255×255 pixels. For

training and tuning the classifiers, we follow the predefined folds in the ND I and ND

II. However, due to the lack of fixed folds in the ND III, cross-validation is applied

during the leave-one-out lens test.

LBP texture feature based algorithms have shown to be effective in cosmetic con-

tact lens detection [21, 29, 59], thus we adopted multi-resolution LBP [21, 29] using

uniform patterns (denoted by LBPu2) [42] as a baseline descriptor for comparing the

4Expressions Colors: http://coopervision.com/contact-lenses/expressions-color-contacts
5ACUVUE2 Colours: http://www.acuvue.com/products-acuvue-2-colours
6FreshLook Colorblends: http://www.freshlookcontacts.com
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LBP BSIF

Pre-processing CCR EER CCR EER

Polar 87.16 6.30 93.23 2.05

Polar with ROI [55] 91.55 4.95 94.40 1.11

Proposed 94.01 3.11 98.42 0.33

Table 1.2: Mean CCR and EER (in %) across different lens types using different

geometric normalization approaches, i.e. polar and Cartesian coordinate systems

and ROI processing. Reprinted with permission from [36] c© 2014 IEEE.

benefits of the proposed pre-processing approach and the BSIF based iris texture de-

scription. In our experiments, the multi-resolution representation was extracted by

applying LBPu2
P,R operator with eight sampling points (P = 8) at multiple scales (radii

R) and concatenating the resulting LBP histograms into a single feature vector. For

fair comparison, the best-performing combination of different LBPu2
8,R operators and

best-performing BSIF descriptor are selected when comparing the different features

in general.

1.3.3.2 Leave-one-out lens validation

Since the algorithms are likely to fail in detecting cosmetic lenses with textured

patterns not present in training material, we begin our experiments with the leave-

one-out protocol of the ND III. Following the protocol used in [22], the models are

trained on images of two of the three lens manufacturers while third one is left out

for evaluating the generalisation capability.

First, we want to find out the actual benefit that we gain by extracting the features

in the original image domain with the proposed pre-processing method instead of

applying traditional normalization into polar coordinate transform. For the sake of

simplicity, a linear support vector machine (SVM) is utilised for classifying both

feature representations. The mean correct classification rate (CCR) and equal error

rate (EER) across different lens folds are shown in Table 1.2. Since the eyelids

and eyelashes often cause severe occlusion over the iris texture, it is not surprising

that the use of ROI already in polar domain leads to increase in performance for

both features. More importantly, the results support our hypotheses as even more

significant performance enhancement is obtained when the proposed pre-processing

approach is used. Thus, we utilise it in the following experiments.

In Table 1.3, we can see the mean performance across different lens folds when

different SVM classification schemes are applied. The use of nonlinear SVM leads

to best results for every feature representation, especially for multi-resolution LBP

as it is able to reach the same performance level as with BSIF descriptors. However,

it is also important to note that the BSIF features perform extremely well even with

linear classifier and the performance does not gain too much when utilising nonlinear

SVM, which shows that the BSIF based iris texture description is indeed suitable for

detecting cosmetic contact lenses.
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Linear RBF One-class

Feature CCR EER CCR EER CCR EER

BSIF 6b 5×5 98.23 0.95 98.31 0.90 92.88 5.52

BSIF 9b 5×5 97.65 0.61 97.65 0.37 94.86 4.18

BSIF 12b 7×7 98.42 0.33 98.47 0.11 95.28 2.09

LBPu2
8,[1−3] 94.01 3.11 97.67 0.69 94.00 5.18

Table 1.3: Mean CCR and EER (in %) across different lens types using different SVM

classifiers. Reprinted with permission from [36] c© 2014 IEEE.

We also included one-class SVM for comparison and tried to approach the prob-

lem by modelling only the genuine iris texture inspired by the work by Alegre et

al. [2]. The use of one-class SVM lead to satisfactory results but both of the two-

class SVMs performed better because the false rejection rate of one-class SVM was

much higher. Although better generalisation capability was achieved with proper

feature design in our experiments, one-class approach should not be forgotten in fu-

ture studies because of the limited number of different textured printing signatures

and (genuine) training samples in the leave-one-out lens validation.

Cooper J & J Ciba Mean

Feature CCR EER CCR EER CCR EER CCR

BSIF 6b 5×5 99.55 0.60 96.73 1.49 98.64 0.62 98.31

BSIF 9b 5×5 98.28 0.30 94.67 0.80 100.00 0.00 97.65

BSIF 12b 7×7 99.78 0.00 95.76 0.34 99.88 0.00 98.47

LBPu2
8,[1−3] 99.33 0.60 97.25 0.46 96.43 1.01 97.67

Table 1.4: Lens specific CCR and EER (in %) of the leave-one-out lens test.

Reprinted with permission from [36] c© 2014 IEEE.

The final results of the leave-one-out lens validation and lens specific breakdown

for the best features and nonlinear SVM can be seen in Table 1.4. Like in [22], we

found out that the Cooper Vision lens appears to be the easiest one to detect probably

because its printing texture is somewhere in between Ciba Vision and Johnson &

Johnson. The results suggest that certain lens types can be more useful in training

and tuning generalised models, like Johnson & Johnson seems to be in the case of the

BSIF based description. It is also worth mentioning that the CCR and EER do not

always go hand in hand due to the cross-validation used during training and tuning

the lens detection models. A proper pre-defined validation set could be probably

used for tuning the operating point in order to avoid this kind of overfitting.

1.3.3.3 Device independent validation

Another important property in practical applications is device independent perfor-

mance. Next, we perform intra-sensor and inter-sensor experiments using ND I and



“contact˙lens˙detection”

2016/11/1

page 17

Soft contact lens detection in iris images 17

Trained on LG4000 Trained on AD100

Intra-sensor Inter-sensor Intra-sensor Inter-sensor

Feature CCR EER CCR EER CCR EER CCR EER

BSIF 6b 98.75 1.25 89.00 5.00 97.67 2.00 97.67 2.50

BSIF 9b 99.33 0.50 93.00 3.00 98.67 1.00 98.67 1.50

BSIF 12b 99.42 0.00 92.33 1.00 99.00 1.00 99.33 0.75

LBPu2
8,[1−3] 98.67 1.25 85.33 16.00 96.33 4.00 90.75 9.25

Table 1.5: CCR and EER (in %) of the cross-sensor validation. Reprinted with

permission from [36] c© 2014 IEEE.

ND II in the NDCLD’13 database. In other words, we train the algorithms on the

training set of ND I and evaluate the models on the test sets of ND I and ND II,

and vice versa. The results in Table 1.5 depict that all texture descriptions using the

proposed pre-processing perform extremely well in the intra-sensor test. However,

BSIF outperforms multi-resolution LBP in the inter-sensor validation, especially in

terms of EER when even 6 bit version of BSIF performs reasonably well. The better

performance of BSIF might be due to its potential tolerance to image degradations,

e.g. blur [34].

1.4 Discussion

The experimental results from Section 1.3 show that it is indeed possible to perform

more generalised textured contact lens detection across unknown iris sensor data

and novel lens printing texture patterns with carefully designed iris texture repre-

sentation. Further works by other researchers have been reporting similar findings

highlighting the importance of proper pre-processing and feature spaces in the con-

text of generalised textured contact lens detection [20] and the three-class problem

of categorising iris images as no lens, clear lens or cosmetic lens [26, 48, 51].

1.4.1 Further work on generalised textured contact lens detection

Doyle and Bowyer [20] extended their prior work [22] and released the Notre Dame

Contact Lens Detection 2015 (NDCLD‘15) dataset that introduces additional sen-

sor and two additional lens brands (printing patterns), Clearlab7 and United Contact

Lens8, that were not included in the extended version of the NDCLD‘13 database

[22]. Their experiments on the more comprehensive dataset provided additional ev-

idence verifying our preliminary results on the robustness of BSIF based iris de-

scription extracted from the original Cartesian image domain. First, the CCR drops

only from 100% in the intra-sensor case to just over 95% in the inter-sensor case,

while the CCR regains back to almost 100% when the data of the different sensors

7Eyedia Clear Color Elements: http://www.clearlabusa.com/eyedia-clear-color.php
8Cool Eyes Opaque: http://www.unitedcontactlens.com/contacts/opaque-lenses.html
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is included into the training set. Second, the average CCR across all leave-n-out

novel lens experiments, where n = {1,2,3,4} and models are trained 5−n and eval-

uated on n lens types, were 97.65%, 95.97%, 92.59% and 85.69%, respectively. It is

also worth mentioning that BSIF outperformed LBP in all of their experiments and

generalised better in every test protocol.

These results suggest that: (1) reasonably good interoperability between different

iris sensors can be achieved in textured contact lens detection but additional models

are (probably) required for novel iris sensors in order achieve extremely high detec-

tion rates, and (2) cosmetic lens detection algorithms can be robust to a previously

unseen printed lens texture patterns and the more lens brands are introduced to the

training set, the better generalisation capabilities can be obtained. When the detec-

tion algorithms are trained with iris images of the target sensor and no previously

unseen lens type is confronted in operation, textured contact lens detection seems to

be a solved problem. In less restricted conditions, sensor-specific factors, e.g. how

their different NIR wavelengths interact with the pigments used in the textured lenses

[20], and the different printing signatures types may degrade the detection rates but

still reasonable generalisation capability may be achieved if substantial number of

known lens types are used in training.

1.4.2 The role of pre-processing in contact lens detection

Pre-processing, e.g. iris image segmentation and normalization, is an important fac-

tor in contact lens detection. The contact lens detection algorithm pipelines, i.e. pre-

processing, feature extraction and classification, have been usually evaluated as a

whole and compared with other approaches having significant differences especially

in the used pre-processing techniques and feature descriptors. Therefore, based on

the literature, it is very hard to tell what is the actual effect of different pre-processing

strategies.

Intuitively, textured contact lenses are the more challenging to detect than other

types of presentation attacks because the artefact is visible only within a very small

part of the iris image. Thus, while periocular region might be useful in e.g. printed

iris image detection, it can be considered to be irrelevant for detecting cosmetic lens

or even distracting. However, recent studies [20, 26] demonstrated that accurate

segmentation and geometric normalization of iris region might not be required for

robust and generalised textured contact lens detection when operating in the original

Cartesian image domain.

Doyle and Bowyer [20] experimented with three different pre-processing strate-

gies for extracting the BSIF description using: (1) the entire given iris image (whole

image), (2) average iris location for the dataset to guess the ROI (best guess), and (3)

accurate automatic segmentation for the given iris image (known segmentation). In

the last two cases, radius of the estimated or segmented ROI is increased by 30 pix-

els to include sclera region where the contact lens boundary might be present. The

pixels not belonging to the ROI were masked out and no geometric normalization,

e.g. resizing, was applied on the used iris region. Interestingly, the CCR was only

slightly decreased when best guess estimate of ROI was utilised instead of exact
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segmentation in inter-sensor validation, while the performance of all three strate-

gies was roughly the same in intra-sensor evaluation. Gragnaniello et al. [26] used

three different ROIs, whole iris image, segmented iris region and segmented region

containing both iris and sclera for computing dense scale-invariant local descriptors

(SID) and bag-of-features (BoF) paradigm based iris representation. Also their ex-

periments showed that cosmetic contact lenses can be detected with high accuracy

using all three pre-processing techniques.

While accurate segmentation and geometric normalization might not be impor-

tant for robust textured lens detection, the same does not hold for the three-class

problem because the differences between no lens and soft lens iris images are not

that evident (as seen in Figure 1.5) compared with textured lenses (at least in the case

of familiar printing patterns). Gragnaniello et al. [26] found out that the specifically

segmented sclera region plays a key role in accurate contact lens detection especially

for no lens and soft lens classes, while the whole image and iris region based feature

representations fail to capture crucial fine details. Therefore, they approached the

three-class problem by utilising accurate sclera and iris segmentation and avoiding

any kind of geometric normalization on the iris images that might distort the subtle

texture variations in sclera and iris regions due to the presence of a contact lens. The

proposed method extracting SID and BoF encoding from the combined sclera and iris

regions obtained the state-of-the-art overall CCR of 88,04% across the three classes

in intra-sensor tests. Unfortunately, the generalisation capabilities of the proposed

pre-processing across different sensors remain unexplored because no inter-sensor

results were reported.

Silva et al. [51] conducted a preliminary study on the effectiveness of deep con-

volutional neural networks (CNN) in contact lens detection. Based on their experi-

ments, even CNNs require approximation of ROI containing iris and possible visible

contact lens boundary in order to reach comparable performance with the state of the

art as overall CCRs of 82,165% and 70,57% across the three classes in intra-sensor

tests and 76,67% and 42,30% in inter-sensor tests were obtained by processing local-

ized iris region and entire given iris images, respectively. However, these preliminary

experiments cannot be regarded as the final word on the effectiveness of deep neural

networks in contact lens detection. Further attention is likely required in order to

find out their full potential.

The idea of using minimal pre-processing, e.g. operating on ”raw iris images” or

approximate iris region, or avoiding any geometric normalization in order to preserve

all valuable fine details, is reasonable when operating on ”classic-still” iris images

captured in controlled and cooperative conditions. For instance, the iris cameras, like

LG4000 and IrisGuard AD100, aim at placing the iris (or the pupil) in the center of

the acquired iris image and acquire an image only when the built-in proximity sensor

tells that there is a subject within a certain distance from the camera. Therefore,

the variation in the position and the size of the iris in the captured images is not

that significant. However, this kind of approaches are not likely to be suitable for

operating e.g. on iris images taken at a distance using an iris on the move (IOM)

system that captures NIR face video of subjects while they are walking through a

portal at a distance three meters away from the camera.
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Robustness and generalisation of software-based contact lens detection in less

controlled conditions can be probably improved by combining different (comple-

mentary) pre-processing strategies. Instead of operating on a single Cartesian im-

age, Raghavendra et al. [48] proposed to combine the iris representations computed

over three different images: (1) whole eye image resized into 120×120 pixels, (2)

300×50 strip image cropped from the original iris image starting from the pupil cen-

ter, i.e. roughly representing the iris, pupil and sclera regions, and (3) ”traditional”

unrolled iris image resized into 512×64. While the ensemble of BSIF descriptions

extracted at multiple scales was not able beat the state of the art [26] on three-class

problem in intra-sensor evaluation (overall CCR of 81,46% vs 88,04), very promis-

ing state-of-the-art performance of 74,73% was obtained in inter-sensor tests. Again,

BSIF based iris image description obtained very high accuracy in textured contact

lens detection in both intra-sensor and inter-sensor tests.

In general, the textured contact lenses can be detected quite well while there

seems to be confusion between natural irises and non-cosmetic soft contact lenses.

This suggests that alternatively the three-class iris image classification problem could

be simplified into a cascade of two binary classification tasks: (1) considering iris im-

ages with and without clear contact lenses as genuine samples and the one with cos-

metic lenses as counterfeit samples, and then (2) discriminating images with trans-

parent lenses from natural images. In this manner, the algorithms could be tuned to

distinguish the fine differences between the two more difficult classes.

1.4.3 On the evaluation of contact lens detection algorithms

The current publicly available benchmark databases have been a very important kick-

off for finding out best practices for contact lens detection. The existing databases

have been and are still useful for developing and evaluating contact lens detection

algorithms, especially for transparent soft lenses. However, the almost perfect CCRs

for textured contact lens detection in ”homogeneous” training and test conditions

indicate that even more challenging configurations are needed. On the other hand,

LivDet-Iris 2013 competition [57] showed that already these kinds of experimental

setups can be made challenging if the actual test data is kept inaccessible during

algorithm development and third-party evaluation is deployed in order to simulate

real-world operating conditions. The resulting performances were far from satisfac-

tory even for the winning method, which suggest that the laboratory results reported

in scientific papers might be indeed overly optimistic estimate on the true generali-

sation capabilities of the existing textured contact lens detection methods. It is worth

highlighting that any later comparison to these competition results should be treated

with caution because it is impossible to reproduce the ”blind” evaluation conditions

any more and, consequently, to achieve a fair comparison.

Another issue in textured contact lens detection is that while the training and

test folds are subject-disjoint, the individual folds contain usually different genuine

and fake subjects, e.g. in [6, 55, 59]. Intuitively, the arrangement of not including

subjects with and without (cosmetic) lenses can be justified in the training phase as

it would prevent methods from learning the subject features instead of lens prop-
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erties [56]. However, this kind of configuration in the test set might lead to bi-

ased results because presentation attack detection methods are well-known for their

subject-dependent performance [10, 58]. Furthermore, on this type of database it is

impossible to conduct user-specific studies, e.g. to analyse the impact of contact lens

detection algorithms and according follow-up procedures on the recognition accu-

racy. When subjects for the different classes are not the same, the acquisition condi-

tions, e.g. used iris sensor [7, 53], may be different [25]. This potential flaw can be

prevented by following exactly the same data collection protocol for all classes, like

conducted e.g. in [20, 22, 56]. It is worth mentioning that the different benchmark

datasets, like [20, 56], enable different kinds of contact lens detection studies but

the effect of important factors, e.g. users and novel lenses, cannot be isolated and

analysed together.

The general evaluation protocols and performance metrics could be also im-

proved. The benchmark datasets contain usually separate folds only for training and

testing which may cause bias due to ”data peeking”. While independent (third-party)

evaluations are impossible to arrange without collective evaluations, like LivDet-Iris

2013 [57], the use of pre-defined training, development and test sets would mitigate

the effect of tuning the methods on the test data. Unambiguous evaluation protocols

would also allow fairer and direct comparison between different studies. The spe-

cific validation set would also help to improve and standardize performance metrics

that have been not been corresponding to real-world operating scenarios e.g. with

specific operating points, or otherwise very informative. For instance, the detec-

tion accuracy for each class in the three-class problem is not that meaningful if the

confusion between the different classes [21, 22], especially in the case of no lens

and transparent lens, is not analysed, e.g. in [26, 48, 51, 56]. As the generalisation

capabilities of contact lens detection algorithms in unknown conditions, e.g. novel

sensors and lenses, have shown to be a real issue, the inter-test protocols should be

followed when provided in a dataset.

1.5 Conclusions

The presence of a contact lens in the acquired iris image degrades the performance

of iris recognition systems. This is particularly true for textured contact lenses that

are designed to alter the original iris texture of the wearer but also for clear soft

lenses due to the change in optical properties of the eye and varying alignment.

Automatic detection of both types of contact lenses would be beneficial for detecting

iris presentation attacks (cosmetic lenses) and engaging adaptation algorithms, e.g.

distortion correction or masking, that could increase the accuracy of iris recognition

systems against transparent lenses.

Since the effect of clear soft prescription lenses on recognition accuracy has been

understated until recently, the research focus has been on textured contact lens detec-

tion and many hardware and software based approaches (and combination of both)

have been proposed in the literature. While hardware-based solutions provide effi-

cient and generalised means for presentation attack detection, they can be also rather

impractical due to additional interaction or unconventional imaging requirements,
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and unpleasant active lighting. Furthermore, these kinds of techniques have been

usually evaluated just to demonstrate a proof of concept or, in the worst case, have

not been experimentally validated at all.

Software-based approaches exploiting only the data captured with ”standard” iris

sensors would be an inexpensive and attractive solution for contact lens detection. In

known operating conditions, cosmetic contact lens detection can be considered as a

solved problem but sensor interoperability and previously unseen printed lens texture

patterns can cause dramatic degradation in detection accuracy. The recent studies on

generalised contact lens detection have demonstrated, however, that with careful fea-

ture design and comprehensive training sets containing target sensors and multiple

contact lens types/brands reasonable, or even rather high, performance can be main-

tained in challenging operating conditions. The issues with generalised contact lens

detection have been recognized but there is still room for future work. Since there

are virtually no technical limitations to fabricate cosmetic contact lenses suitable for

targeted impersonation, it would be interesting to see if new approaches are needed

for discriminating original natural iris texture from replica of it.

The research on the problem of soft prescription lenses, on the other hand, is

just in its infancy and only a few approaches have been introduced. Detection of

clear soft contact lenses is far more difficult compared to the problem of textured

lenses because the appearance differences between no lens and soft lens iris images

are very subtle and highly dependent on the input image quality, for instance. The

reported results have not been satisfactory so far and even hardware-based methods

have not been able to provide generalised solutions yet. Thus, robust soft contact

lens detection is still an open research topic.

Compared with ”classic-still” NIR iris images, distant iris acquisition would be

more practical e.g. in watchlist applications but there are no studies that perform

contact lens detection from images captured with iris on the move (IOM) systems.

While NIR iris sensors are emerging in mobile devices, already the standard high-

quality cameras embedded in smartphones facilitate iris recognition [19]. Detec-

tion of print [27] and video [49] based presentation attacks from conventional RGB

iris images has received already some attention but textured contact lenses have not

been included in these preliminary works. Even though there are still unresolved is-

sues when operating on ”classic-still” NIR iris images, contact lens detection in iris

images captured in less restricted acquisition conditions and application scenarios

would be an interesting and important research topic.
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