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ABSTRACT

Conventional 2D face biometric systems are vulnerable to presentation attacks performed
with di↵erent face artefacts, e.g., printouts, video-replays and wearable 3D masks. The
research focus in face presentation attack detection (PAD) has been recently shifting to-
wards end-to-end learning of deep representations directly from annotated data rather
than designing hand-crafted (low-level) features. However, even the state-of-the-art deep
learning based face PAD models have shown unsatisfying generalization performance
when facing unknown attacks or acquisition conditions due to lack of representative train-
ing and tuning data available in the existing public benchmarks. To alleviate this issue,
we propose a video pre-processing technique called Temporal Sequence Sampling (TSS)
for 2D face PAD by removing the estimated inter-frame 2D a�ne motion in the view and
encoding the appearance and dynamics of the resulting smoothed video sequence into a
single RGB image. Furthermore, we leverage the features of a Convolutional Neural Net-
work (CNN) by introducing a self-supervised representation learning scheme, where the
labels are automatically generated by the TSS method as the stabilized frames accumu-
lated over video clips of di↵erent temporal lengths provide the supervision. The learnt
feature representations are then fine-tuned for the downstream task using labelled face
PAD data. Our extensive experiments on four public benchmarks, namely Replay-Attack,
MSU-MFSD, CASIA-FASD and OULU-NPU, demonstrate that the proposed framework
provides promising generalization capability and encourage further study in this domain.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Face recognition (FR) has become an indispensable compo-
nent in numerous real-world application domains requiring re-
liable person verification or identification, such as device un-
locking, online banking, smart homes, airports, video surveil-
lance and law enforcement. The threat of presentation attacks
(spoofing) is one of the main issues with FR systems as con-
ventional FR techniques are vulnerable to direct sensor-level
attacks, where an artificial biometric sample is presented to con-
fuse the recognition system using di↵erent presentation attack
instruments (PAI), e.g., printouts, displays, paper masks and
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wearable 3D masks. Compared with other biometric traits, such
as iris and fingerprint, face biometric samples of the targeted
person are much easier to obtain. For instance, people are shar-
ing their pictures openly on the Internet using di↵erent social
media platforms, from which attackers can easily acquire pho-
tographs to create face artefacts. Since conventional FR algo-
rithms are not inherently capable of discriminating attacks from
bona fide faces, dedicated presentation attack detection (PAD)
methods are needed to mitigate the vulnerabilities to spoofing.

The accuracy of automatic FR is no longer a major concern in
numerous real-world applications, thus the focus in FR research
community has shifted towards mitigating the threat posed by
presentation attacks. Traditionally, software-based face PAD
techniques have been founded on hand-crafted (low-level) fea-
tures describing liveness and motion cues, like eye blinking and
lip movements [18], and facial texture [5, 22] and image quality
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[11, 34] properties of bona fide and artificial faces, for instance.
However, low-level features rely heavily on human experience
to extract detailed information and the designed feature spaces
might not be able to distinguish subtle di↵erences between bona
fide samples and various face artefacts. In the past few years,
end-to-end learning of deep features, e.g., Convolutional Neural
Networks (CNNs) with di↵erent loss functions, have been suc-
cessfully utilized to overcome some limitations of hand-crafted
descriptors [15, 17, 21, 26, 27, 32, 33, 36, 37, 39]. A compre-
hensive overview of the recent advances in deep learning based
face PAD can be found in [38].

Although promising results have been achieved, even the
state-of-the-art deep learning based face PAD techniques have
shown unsatisfying generalization performance when facing
unknown operating conditions of unconstrained real-world ap-
plications. The lack of generalization is largely due to the do-
main shift between source (train) and target (test) data as the
existing public face PAD benchmarks su↵er from severe bias
across di↵erent covariates, including user demographics, PAIs,
sensors, image/video resolution, frame rate, illumination con-
ditions and stand-o↵ distance between face and sensor. The
domain generalization issues of software-based face PAD meth-
ods have been widely acknowledged and the recent trend in face
PAD research has been increasingly on improving the perfor-
mance in: 1) cross-database studies where a method is trained
and tested with di↵erent datasets [9], and 2) specific intra-
database cross-test evaluation protocols where pre-defined sub-
sets of a dataset are used to introduce unseen test conditions,
e.g., cameras, PAIs, illumination and environments [7, 21].

Leveraging the potential of the state-of-the-art deep learn-
ing architectures and tuning well-generalizing face PAD models
are still very di�cult problems due to the huge number of pa-
rameters and the limited amount of representative training data
available in the existing public datasets. The approaches pro-
posed in the context of generalized face PAD can be roughly
categorized into: 1) face PAD-specific feature learning to cap-
ture the intrinsic di↵erences between real and fake faces [17],
2) data augmentation and synthesis [36], 3) auxiliary supervi-
sion [21, 33, 36, 37, 39], 4) domain adaptation [20, 23, 32]
and generalization [15], and 5) continual detection and learn-
ing of novel attack types [26]. While face PAD has been tradi-
tionally treated as a ”black box” binary classification problem,
Jourabloo et al. [17] proposed a deep CNN architecture for
explicitly extracting PAI dependent spoof noise, e.g., charac-
teristic reflections, colour distortions and moiré patterns, from
facial images and then use spoof noise modelling for discrimi-
nating attacks from bona fide samples. Yang et al. [36] intro-
duced a data synthesis technique to simulate digital medium-
based spoofing attacks and were able to significantly improve
the PAD performance with their augmented training data. Liu
et al. [21] proposed to increase the generalization of face PAD
methods by exploiting spatial and temporal auxiliary supervi-
sion, where face depth can be considered as spatial information
while remote photoplethysmography (rPPG) signals (pulse) are
used as temporal cues. Several works have also approached
the generalization issues in face PAD from domain adaptation
and domain generalization point of view. Domain adaptation
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Fig. 1. In the proposed TSS method, the input video is first divided into N

equal video clips and the inter-frame 2D a�ne motion is estimated within
each video clip based on the trajectories of SURF keypoint matches. Then,
the estimated inter-frame 2D a�ne motion is removed from the video
frames and the resulting clips are accumulated into single RGB images.

Fig. 2. First frame of a sample print attack video clip (left) and the mean of
the corresponding stabilized video clip (middle). The result of simple frame
averaging (right) is included for comparison to demonstrate the amount of
inter-frame 2D a�ne motion in the original print attack video clip.

[20, 23, 32] based approaches exploit some data from the target
domain to match the feature distributions of source and target
domains, whereas domain generalization [15] based techniques
try to minimize the bias between diverse source domains with-
out using any data from the target domain. Rostami et al. [26]
proposed to tackle the problem of unknown attacks using con-
tinual detection and learning of novel attack types and devel-
oped a method to update a face PAD model with test samples
that do not fit the training distribution in an embedding space.

Despite the generalization ability of the face PAD methods
proposed in the literature has been gradually improving, the re-
sults have been still far from satisfying for real-world applica-
tions. For instance, the performance of methods using auxiliary
supervision depends largely on the accuracy of the estimated
auxiliary information. Monocular depth estimation from sin-
gle face images or even short video sequences is rather di�cult
if active user interaction, e.g., challenge-response approach, is
not utilized during liveness check. Also, reliable estimation of
rPPG signals is hard when the subject is moving or lighting con-
ditions are challenging. A major problem with domain adap-
tation based approaches is that collecting data from the target
domain is expensive or even impossible in some real-world use
cases.

In this work, we propose to use spatiotemporal informa-
tion for face PAD because we argue that both static and dy-
namic information provide important visual cues for discrim-
inating artificial faces from real ones. However, the succes-
sive frames in PAD videos are highly redundant. The videos
might comprise hundreds of frames repeating similar patterns,
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Fig. 3. An illustration of the proposed self-supervised and TSS training tasks. During the self-supervised learning phase, the CNN receives unlabelled
TSS sampling outputs accumulated over di↵erent temporal lengths and the pretext task is to predict the length of the original video clip. The learnt
feature representations are then fine-tuned on labelled TSS encoded video clips by performing PAD as the downstream task (stage 1). Finally, the BiLSTM
subnetwork is trained using the fine-tuned features (stage 2) to make the final PAD decision.

which makes it di�cult to extract meaningful liveness cues
even with deep learning based approaches. Therefore, we pro-
pose a simple, yet e↵ective pre-processing method called Tem-
poral Sequence Sampling (TSS) to accumulate appearance and
dynamic information of video sequences into single RGB im-
ages. This is achieved by splitting an input video sequence into
non-overlapping segments, and then estimating the trajectories
of keypoints within each video clip. We focus on the problem
of print and display attacks (consisting of both digital photos
and video-replays) when the PAIs can be considered as planar
2D objects. Therefore, we stabilize each video segment by re-
moving the inter-frame 2D a�ne motion estimated based on
the keypoint trajectories and then aggregate the resulting video
frames into a single image. Fig. 1 provides an illustration of the
steps described above. A comparison between straightforward
frame aggregation and the output of the proposed TSS approach
is shown in Fig. 2, which highlights the amount of inter-frame
2D a�ne motion in the original print attack video clip1.

It is worth noting that the cumulative 2D a�ne transforma-
tion estimated within a video clip is not directly used for face
alignment but to enrich the spatiotemporal discrepancies be-
tween real 3D faces and flat 2D face artefacts in the observed
view. The proposed approach can handle also print attacks
where the 2D surface is warped, as bending a photograph leads
to a highly distorted cumulative 2D a�ne mapping that is not
characteristic for real faces. The problem of video-replay at-
tacks exhibiting also non-rigid facial motion is tackled by fo-
cusing on appearance information, which has shown promis-

1Sample videos can be found at: http://yty.kapsi.fi/PRL_2022/

ing generalization in detecting display attacks, e.g., in [6], due
to evident screen bezels, video compression artefacts, display
noise signatures, moiré e↵ects, and luminance and colour dis-
tortions, for instance.

Recently, self-supervised learning [16] has been receiving
increasing attention as solving pretext tasks, like patch loca-
tion, order and rotation prediction, in unsupervised manner has
shown to be successful in learning meaningful and more inter-
pretable visual representations from the data itself, thus miti-
gating the need for human annotations for the downstream task.
Inspired by the work on frame order prediction where 3D CNNs
and optical flow information have been utilized [19, 35], we
propose a self-supervised learning scheme where the pretext
task is to predict the length of the original video clip based
on the TSS encoded data. To be more specific, the stabilized
frames accumulated over video segments of di↵erent tempo-
ral lengths provide the supervision for training a 2D CNN with
the aim of learning more meaningful representations from the
videos aggregated into single RGB images. The learnt visual
features are then fine-tuned for the downstream face PAD task.

The main contributions of this work can be summarized as
follows:

1. In order to reduce temporal redundancy and remove inter-
frame 2D a�ne motion in videos, Temporal Sequence
Sampling (TSS) is introduced to encode video clips into
a compact representation in the form of a single RGB im-
age.

2. The need for annotated data in face PAD is mitigated using
self-supervised learning.

3. The e↵ectiveness of the proposed approach is demon-
strated using the o�cial cross-test evaluation protocols
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of the OULU-NPU database [7] and several widely used
cross-database configurations, where promising general-
ization ability with new state-of-the-art results is achieved.

We also provide the source code2 to the research community for
reproducing, verifying and extending our results.

2. Proposed Method

The backbone of the proposed face PAD approach is the TSS
method, which removes inter-frame 2D a�ne motion within a
video segment and accumulates frames of the resulting motion-
compensated video clip into a single RGB image (see, Fig. 1
and Fig. 2). The main architecture of our face PAD frame-
work is illustrated in Fig. 3. During the self-supervised learning
phase, the CNN receives unlabelled TSS encoded frames ac-
cumulated over video segments of di↵erent temporal lengths
and the pretext task is to predict the length of the original
video clip. The learnt feature representations are then fine-
tuned on labelled TSS encoded video clips by performing PAD
as the downstream task (stage 1 in Fig. 3). Finally, a Bidirec-
tional Long Short-Term Memory (BiLSTM) [28] subnetwork is
trained using the fine-tuned CNN features to make the final face
PAD decision (stage 2 in Fig. 3). A more detailed description of
the proposed TSS method and self-supervised learning scheme
is provided in the following, while the implementation details
and the training process are discussed later in Section 3.3.

2.1. Temporal Sequence Sampling (TSS)

The steps of the proposed Temporal Sequence Sampling
method are illustrated in Fig 1. First, the input video is equally
partitioned into S non-overlapping segments (clips), where
each video clip contains the same number of frames, e.g., 45.
We estimate the 2D a�ne motion between all adjacent frames
of a video clip based on sparse point correspondences. We use
first Speeded Up Robust Features (SURF) descriptor [1] to de-
tect keypoints from both the face and background regions in
each video frame and then find the corresponding points be-
tween all adjacent video frames using the Hamming distance.

The M-estimator SAmple Consensus (MSAC) algorithm
[31] is utilized to mitigate the impact of incorrect point cor-
respondences and to get robust estimates of the 2D a�ne trans-
formations between the adjacent frames. MSAC is an improved
version of RANdom SAmple Consensus (RANSAC) where an
M-estimator is introduced to set outlier point correspondences
a constant weight while inliers are weighted based on how well
they fit the estimated transformation.

The resulting 2D a�ne transformation between adjacent
frames is a 3x3 matrix:

2
666666664

a1 a2 tx

a3 a4 ty

0 0 1

3
777777775 (1)

where an represents scale, rotation, and shearing transforma-
tions and tx and ty correspond to translation. However, we con-
vert the 2D a�ne transformation described above into a simpler

2https://github.com/Usman1021/Self-Supervised-2D-PAD

and more stable four parameter transformation to produce the
final motion-compensated video clip:

2
666666664

s cos ✓ �s sin ✓ tx

s sin ✓ s cos ✓ ty

0 0 1

3
777777775 (2)

where s is a scale factor and ✓ rotation angle.
The 2D a�ne transformation between two frames Fi and Fi+1

is denoted with Ai when the cumulative 2D a�ne transforma-
tion of a frame Fi with respect to the first (reference) frame
F0 of the video segment corresponds to cascaded inter-frame
transformations:

A0,i =

i�1Y

j=0

Aj (3)

The estimated cumulative transformation A0,i is used to
remove inter-frame 2D a�ne motion by warping each frame Fi

relative to the first frame F0 of the video clip. It is worth high-
lighting that the cumulative transformation aims at removing
the infer-frame 2D motion, but the frame Fi is not necessarily
aligned with the reference frame F0 due to the cumulative
errors in estimating the motion between adjacent frames and
changes in the observed view within the video clip.

Finally, we take the temporal average of the motion-
compensated frames to encode the whole video clip into a
single RGB image. An example of the TSS output is shown in
Fig. 2.

2.2. Self-supervised representation learning

The amount and nature of spatiotemporal variations within
video segments, and, consequently, the TSS outputs and their
corresponding CNN feature representations depend largely on
the duration of the input sequence. Therefore, the key idea
of our self-supervision scheme is to generate sets of TSS en-
coded video clips with di↵erent temporal lengths L and then
learn the spatiotemporal variations and context across these dif-
ferent length settings. To be more specific, we first generate
T classes of TSS outputs with e.g., L = {5, 15, 30, 45, 60} and
then use these labels to train a deep CNN with softmax loss to
predict the length of a given TSS encoded video segment. Af-
ter the self-supervised spatiotemporal context adaptation step,
the learnt 2D visual features are then further fine-tuned for the
actual downstream task of face PAD and finally the BiLSTM
subnetwork is trained using the resulting CNN features.

3. Experimental Setup

In the following, we introduce briefly the public benchmark
face PAD datasets and describe the evaluation metrics and pro-
tocols used in our experimental analysis. Finally, the imple-
mentation details of the proposed approach are also provided.
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3.1. Experimental data

To assess the generalization of the proposed face PAD ap-
proach, we considered four widely used publicly available
databases consisting of bona fide and 2D face presentation at-
tack videos, namely Idiap Replay-Attack Database [8] (denoted
as I), CASIA Face Anti-Spoofing Database [41] (denoted as C),
MSU Mobile Face Spoofing Database [34] (denoted as M), and
OULU-NPU Database [7] (denoted as O).

Idiap Replay-Attack Database [8] consists of bona fide and
attack videos of 50 subjects captured under two di↵erent light-
ing conditions. Five di↵erent attacks are launched with iPhone
3GS (digital photo and video-replay), 1st generation iPad (dig-
ital photo and video-replay) and hard copies. All videos are
recorded with a built-in webcam of a MacBook Air laptop. Al-
together, the database contains 1,200 videos, which are divided
into three subject-disjoint subsets for training, development and
testing (15, 15 and 20 subjects, respectively).

CASIA Face Anti-Spoofing Database (CASIA-FASD) [41]
contains bona fide and attack videos of 50 subjects recorded
with three di↵erent of imaging qualities (low, normal and high)
and considers three kinds of attack presentations (warped photo,
cut-photo and video-replay). Consequently, each subject has
three kinds of bona fide videos and nine di↵erent attack presen-
tations. Altogether, the database contains 600 videos, which are
divided into two subject-disjoint subsets for training and testing
(20 and 30 subjects, respectively).

MSU Mobile Face Spoofing Database (MSU-MFSD) [34]
includes bona fide and attack videos of 35 subjects recorded
with two mobile devices (a Google Nexus 5 smartphone and
a MacBook Air laptop). Three kinds of attack presentations
are considered, including two video-replay attacks of di↵erent
quality (iPhone 5S and iPad Air) and a print attack. Conse-
quently, each subject has two kinds of real videos and six dif-
ferent attack presentations. Altogether, the database contains
280 videos, which are divided into two subject-disjoint subsets
for the training and testing (15 and 20 subjects, respectively).

OULU-NPU Database [7] is one of the most recent com-
monly used face PAD datasets. It contains bona fide and attack
videos of 55 subjects recorded in several acquisition conditions
(six high-resolution smartphone front cameras and three ses-
sions) and considers two kinds of print attacks and two kinds
of video-replay attacks. Four cross-test protocols are used to
evaluate the generalization performance of a face PAD method
across di↵erent covariates. Protocols 1, 2, and 3 introduce a sin-
gle previously unseen test condition, namely illumination, PAI
and sensor, respectively, while the fourth and most challeng-
ing protocol evaluates the generalization performance simulta-
neously across unknown sensors, attacks and illumination con-
ditions. Altogether the database contains 5,940 videos, which
are divided into three subject-disjoint subsets for training, de-
velopment and testing (20, 15 and 20, respectively).

3.2. Evaluation metrics and protocols

All four datasets are used in our cross-database experiments,
while only the OULU-NPU database is utilized also for intra-
database experiments following its o�cial cross-test protocols
that assess generalization across di↵erent covariates.

For our cross-database experiments, we follow the widely
used evaluation metrics and protocols introduced in [9]. The
results are reported using Half Total Error Rate (HTER), which
denotes the mean of the False Acceptance Rate (FAR) and False
Rejection Rate (FRR). The HTER is computed on the test set
of the target domain using the threshold ⌧ corresponding to the
equal error rate (EER) operating point on the development set of
the source domain. In the case of the CASIA-FASD and MSU-
MFSD datasets, the threshold ⌧ is computed on the training set
because they lack pre-defined validation sets (see, Section 3.1).

The intra-database results on the o�cial cross-test protocols
of the OULU-NPU database are reported in terms of Average
Classification Error Rate (ACER), which denotes the mean of
Attack Presentation Classification Error Rate (APCER) and
Bona Fide Presentation Classification Error Rate (BPCER).
APCER and BPCER essentially correspond to FAR and FRR,
respectively, but APCER is computed separately for each PAI,
e.g., print and video-replay, and the final PAD performance
corresponds to the attack with the highest APCER, i.e., the
most successful PAI. Similarly to the HTER, the ACER is
computed on the test set using the threshold ⌧ corresponding to
the EER operating point on the development set.

3.3. Implementation details

We utilize both the face and background regions for PAD,
thus no face cropping is applied. The TSS method processes
the frames of the input video clips at their native resolution, and
the TSS generated accumulated output frames are resized to
224 ⇥ 224 according to the input image size of the pre-trained
CNN (ResNet-101 [14]). The video segment length for TSS
methods was set to 45 and the number of TSS encoded seg-
ments depends on the total length of an input video sequence.
For instance, a video of 270 frames results in six TSS encoded
video clips. No data augmentation is applied during training.

To evaluate the generalization performance of the pro-
posed TSS method, the pre-trained CNN is fine-tuned using
Stochastic Gradient Descent (SGD) with mini-batch size of
32 and validation frequency of 30, and by shu✏ing every
epoch. We do not use fixed epochs because an early stopping
function is utilized to automatically stop the model training
when over-fitting is observed [25]. The learning rate is fixed
to 0.0001 in our cross-database experiments, while we adjust
the learning rate to 0.001 on all four intra-database cross-test
protocols of the OULU-NPU dataset.

The fine-tuned feature vectors are extracted from the output
of the last pooling layer with size of 2048. The BiLSTM
subnetwork is trained using cross-entropy loss and Adam
optimizer with fixed learning rate of 0.0001. The number of
hidden units is fixed to 100 in the cross-database experiments,
while the number of hidden units is increased to 500 on all
four intra-database cross-test protocols of the OULU-NPU
dataset. We set the recurrent weights with He initializer [13]
that performs the best in all scenarios of our experiments.

During the self-supervised training stage, we first fine-tune
the pre-trained CNN with the aforementioned settings on the
unlabelled data of the pretext task, i.e., sets of TSS outputs with
di↵erent temporal length combinations. Then, the model is
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Fig. 4. Cross-database performance with di↵erent video segment lengths.

further fine-tuned using the binary labels (bona fide and attack)
of the downstream task by replacing the fully connected layer
with a new one with the output size of 2. Finally, the BiLSTM
subnetwork takes the input of the last average pooling layer of
the fine-tuned CNN and gives the final binary PAD decision.

4. Experimental Results

Our experimental analysis focuses on assessing the gen-
eralization performance of the proposed approach under two
settings: 1) di↵erent cross-database configurations, and 2) the
o�cial intra-database cross-test protocols of the OULU-NPU
dataset. In the following, we first investigate the e↵ect of
the input video sequence length on the TSS method and then
study the e↵ectiveness of the proposed self-supervised learning
scheme in cross-database tests between the CASIA-FASD and
Replay-Attack datasets. Finally, we compare the performance
of the proposed approach against the state of the art in several
widely used cross-database configurations and on the four
o�cial evaluation protocols of the OULU-NPU database.

4.1. The e↵ect of video segment length

We begin our experiments by exploring how the performance
of the proposed TSS method depends on the length of the video
segment. We examine the generalization performance by vary-
ing the length of video segments L from 5 to 60 frames. The
cross-database results on the Replay-Attack and CASIA-FASD
databases shown in Fig. 4 depict that the HTER decreases as the
number of frames per video segment increases. However, when
we further increase the temporal length of frames to more than
45 frames, the face PAD performance on the CASIA-FASD
and Replay-Attack datasets starts decreasing. Therefore, we set
L = 45 where the best performance is achieved, i.e., HTER of
9.3% on Replay-Attack and 18.1% on CASIA-FASD database.

4.2. E↵ectiveness of self-supervised learning

For assessing the performance of the proposed self-
supervised learning scheme, we construct three sets of TSS en-
coded video segments with varying number of temporal lengths
L = {5, 15, 30, 45, 60} for the pretext task. It can be observed

Table 1. Cross-database performance of the proposed self-supervised
learning scheme in terms of HTER (%).

Number of classes Segment lengths Train C / Test I Train I / Test C
2 30, 45 8.2 18.4
3 15, 30, 45 5.9 15.2
5 5, 15, 30, 45, 60 24.8 22.1

Table 2. Cross-database performance in terms of HTER (%) on the Replay-
Attack and CASIA-FASD databases. Comparative results are obtained
from [40].

Method Train CASIA-FASD Train Replay-Attack
Test Replay-Attack Test CASIA-FASD

LBP [22] 47.0 39.6
LBP-TOP [10] 49.7 60.6
Color-LBP [4] 30.3 37.7

Motion-Mag [2] 50.1 47.0
Spectral cubes [24] 34.4 50.0

Auxiliary [21] 27.6 28.4
FaceDs [17] 28.5 41.1
STASN [36] 31.5 30.9
DSGTD [33] 17.0 22.8
CDCN [40] 6.5 29.8

TSS with ResNet 30.4 39.9
TSS with ResNet-BiLSTM 9.3 18.1

Self-supervised learning 5.9 15.2

from Table 1 that the use of pretext task with three temporal
lengths (L = {15, 30, 45}) leads to best cross-database perfor-
mance, improving the HTER with 3.4% and 2.9% for Replay-
Attack and CASIA-FASD databases, respectively.

4.3. Comparison against the state of the art

The results presented in Table 2 depict that our TSS method
achieves astonishing cross-database performance between the
Replay-Attack and CASIA-FASD datasets, and that the gen-
eralization ability can be further improved when the proposed
self-supervised learning stage is included in training the PAD
model. The TSS method combined with self-supervised learn-
ing obtains the state of the art in this widely used cross-database
configuration, achieving an HTER improvement from 9.3% to
5.9% on the Replay-Attack dataset and from 18.1% to 15.2%
on the CASIA-FASD dataset, respectively. Thus, the proposed
self-supervised learning scheme indeed helps in fine-tuning a
2D CNN to learn more meaningful representations from the
TSS encoded video segments.

Table 3. Combined cross-database evaluation using MSU-MFSD (M),
Idiap Replay-Attack (I), CASIA-FASD (C) and OULU-NPU (O) databases.
Comparative results are obtained from [15].

M&I to C M&I to O
Method HTER(%) AUC(%) HTER(%) AUC(%)
MS-LBP [22] 51.16 52.09 43.63 58.07
LBP-TOP [10] 45.27 54.88 47.26 50.21
Color-LBP [5] 55.17 46.89 53.31 45.16
IDA [34] 45.16 58.80 54.52 42.17
MADDG [30] 41.02 64.33 39.35 65.10
SSDG-M [15] 31.89 71.29 36.01 66.88
TSS with ResNet 29.58 79.44 37.62 70.26
TSS with ResNet-BiLSTM 28.66 83.73 30.12 79.06

Table 3 presents the generalization performance of our TSS
approach in another cross-database configuration, combining
the MSU-MFSD and Replay-Attack databases for training and
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Table 4. Intra-database evaluation on the four o�cial protocols of the
OULU-NPU database. Comparative results are obtained from [40].

Protocol Method APCER(%) BPCER(%) ACER(%)

1 DeepPixBiS [12] 0.8 0.0 0.4
GRADIANT [3] 1.3 12.5 6.9
Auxiliary [21] 1.6 1.6 1.6
FaceDs [17] 1.2 1.7 1.5
STASN [36] 1.2 2,5 1.9
DSGTD [33] 2.0 0.0 1.0
CDCN [40] 0.4 0.0 0.2
BiFPN [27] 3.1 0.8 2.0
TSS with ResNet 0.6 10.3 5.5
TSS with ResNet-BiLSTM 0.0 0.2 0.1

2 DeepPixBiS [12] 11.4 0.6 6.0
GRADIANT [3] 3.1 1.9 2.5
Auxiliary [21] 2.7 2.7 2.7
FaceDs [17] 4.2 4.4 4.3
STASN [36] 4.2 0.3 2.2
DSGTD [33] 2.5 1.3 1.9
CDCN [40] 1.8 0.8 1.3
BiFPN [27] 1.7 1.1 1.4
TSS with ResNet 2.0 2.1 2.1
TSS with ResNet-BiLSTM 0.4 0.8 0.6

3 DeepPixBiS [12] 11.7±19.6 10.6±14.1 11.1±9.4
GRADIANT [3] 2.6±3.9 5.0±5.3 3.8±2.4
Auxiliary [21] 2.7±1.3 3.1±1.7 2.9±1.5
FaceDs [17] 4.0±1.8 3.8±1.2 3.6±1.6
STASN [36] 4.7±3.9 0.9±1.2 2.8±1.6
DSGTD [33] 3.2±2.0 2.2±1.0 2.7±0.6
CDCN [40] 1.7±1.5 2.0±1.2 1.8±0.7
BiFPN [27] 0.7±0.7 0.3±0.7 0.5±0.6
TSS with ResNet 7.2±8.3 3.9±3.4 5.5±3.0
TSS with ResNet-BiLSTM 2.5±1.8 0.5±0.6 1.5±0.8

4 DeepPixBiS [12] 36.7±29.7 13.3±14.1 25.0±12.7
GRADIANT [3] 5.0±4.5 15.0±7.1 10.0±5.0
Auxiliary [21] 9.3±5.6 10.4±6.0 9.5±6.0
FaceDs [17] 1.2±6.3 6.1±5.1 5.6±5.7
STASN [36] 6.7±10.6 8.3±8.4 7.5±4.7
DSGTD [33] 6.7±7.5 3.3±4.1 5.0±2.2
CDCN [40] 4.2±3.4 5.8±4.9 5.0±2.9
BiFPN [27] 2.5±3.2 3.3±4.1 2.9±3.4
TSS with ResNet 5.7±4.5 16±13 10.8±5.3
TSS with ResNet-BiLSTM 4.7±10.5 9.2±10.4 7.1±5.3

the CASIA-FASD and OULU-NPU databases for testing. The
proposed TSS method with CNN-BiLSTM framework achieves
the best results and significant improvement with respect to the
state of the art in HTER from 31.89% to 28.66% on the CASIA-
FASD and from 36.01% to 30.12% on the OULU-NPU dataset.

The results of the intra-database experiments following the
o�cial evaluation protocols of the OULU-NPU database are
presented in Table 4. From these results it can be seen that the
proposed TSS method with CNN-BiLSTM framework ranks
first on the protocols 1 and 2 of the OULU-NPU database ob-
taining ACER of 0.1% and 0.6%, respectively, and achieves
very competitive performance of 1.5% and 7.1% in terms of
ACER on the protocols 3 and 4, respectively.

We have also included the performance of the proposed
TSS method in the cross-database experiments and the intra-
database tests on the OULU-NPU without the BiLSTM subnet-
work in order to demonstrate the importance of the BiLSTM
component on the final face PAD performance.

4.4. Network visualization and analysis

In this section, we use Gradient-weighted Class Activation
Mapping (Grad-CAM) [29] to help in explaining why the pro-
posed method makes a particular decision. Sample Grad-CAM
visualizations of real faces, video-replay attacks and print at-
tacks are presented for further analysis in Fig. 5. The first row
represents samples of real faces, from which one can see that
the network gives clear focus on the actual facial region due
to e.g., head motion, non-rigid facial movements, eye blinking

Fig. 5. Grad-CAM visualizations for TSS encoded videos corresponding to
real faces (first row), video-replay attacks (second row) and print attacks
(third row).

and skin texture, while the background region does not provide
liveness cues. In contrast, the samples of video-replay and print
attacks in the second and third rows, respectively, depict that
the discriminative visual and motion cues are PAI related and
attention is more dispersed and focusing also on background
regions, i.e., non-face related information.

5. Conclusions

In this paper, we addressed the generalization issues in 2D
face presentation attack detection. We proposed a Temporal
Sequence Sampling (TSS) method that removes the estimated
inter-frame 2D a�ne motion within short video clips and en-
codes the appearance and dynamics of the resulting frames into
a single colour image. We also introduced a self-supervised
learning scheme where the stabilized video frames accumulated
over sequences of di↵erent temporal lengths provide the super-
vision to train a 2D Convolutional Neural Network. We con-
ducted extensive experimental analysis using the o�cial intra-
test protocols of the OULU-NPU database and several cross-
database configurations on four public face PAD databases to
demonstrate the robustness of the proposed framework.

The proposed approach needs capturing and processing of
relatively long input sequences, i.e., approximately two seconds
of video, in order to achieve robust face PAD performance, thus
it cannot be used in authentication applications requiring real-
time response or biometric systems operating on single facial
images. A drawback of encoding stabilized video clips into a
compact representation in the form of a single colour image
is that the subtle inter-frame motion (direction) information is
lost due to frame aggregation. Therefore, we plan to extend our
work by developing methods that explicitly model the geomet-
rical di↵erences in the feature or facial landmark based trajecto-
ries between motion-compensated bona fide and attack videos.
In this work, we focused only on detecting attacks launched
with 2D PAI, i.e., prints and displays, thus it is yet unknown
whether the proposed approach generalizes well under unseen
or other types of facial artefacts, including paper and 3D masks.
In the future, we will explore the robustness of our method on
new emerging face PAD datasets and evaluation protocols.
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