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Abstract—An empirical investigation of active/continuous au-
thentication for smartphones is presented by exploiting users’
unique application usage data, i.e., distinct patterns of use,
modeled by a Markovian process. Specifically, variations of
Hidden Markov Models (HMMs) are evaluated for continuous
user verification, and challenges due to the sparsity of session-
wise data, an explosion of states, and handling unforeseen events
in the test data are tackled. Unlike traditional approaches, the
proposed formulation utilizes the complete app-usage information
to achieve low latency. Through experimentation, empirical
assessment of the impact of unforeseen events, i.e., unknown
applications and unforeseen observations, on user verification
is done via a modified edit-distance algorithm for sequence
matching. It is found that for enhanced verification performance,
unforeseen events should be considered. For validation, extensive
experiments on two distinct datasets, namely, UMDAA-02 and
Securacy, are performed. Using the marginally-smoothed HMM a
low equal error rate (EER)of 16.16% is reached for the Securacy
dataset and the same method is found to be able to detect an
intrusion within ⇠ 2.5 minutes of application use.

Keywords—Active authentication; application usage-based ver-
ification; unforeseen observation handling; hidden markov mod-
els; marginal smoothing; markov chains; sequence matching;

I. INTRODUCTION

With the rapid increase of smartphone users worldwide, the
mobile applications are growing both in number and popularity
[47]. The number of apps in Google Play store is around
2.1 million, while in Apple App Store, Windows Store and
Amazon Appstore there around 2.0 million, 669 thousand, and
450 thousand applications, respectively1. It has been estimated
that a total of 197 billion mobile applications were downloaded
in 20172. A retrospective study in 2017 showed that on average
a smartphone user uses over 40 different mobile applications
per month and has over 80 different applications installed
on the phone [42]. As for usage duration in 2017, in the
USA, the smartphone users spend on a daily basis around
2 hours 51 minutes on mobile applications, i.e., over one and
a half month usage of applications in a year 3. With growing
concerns of smartphone security, monitoring the application

1https://www.statista.com/statistics/276623/number-of-apps-available-in-
leading-app-stores/

2https://www.statista.com/statistics/271644/worldwide-free-and-paid-
mobile-app-store-downloads/

3https://www.comscore.com/Insights/Blog/Mobile-Matures-as-the-Cross-
Platform-Era-Emerges

usage coupled with the diverse pool of applications can help
to make a difference in user authentication systems.

Smartphone application usage data can provide several
interesting insights on the device users leading to different use
cases of such data. There are several research works on user
profiling and predicting behavioral patterns using application
usage data [41], [45], [47], [48]. Predicting application usage
pattern can also help optimizing smartphone resources and
help simulating realistic usage data for automated smartphone
testing [5], [9], [17], [18], [20], [22]. The open foreground
application can also work as a context for active authenti-
cation using other modalities [8], [19], [29], [31], [40]. For
example, when verifying with touch and accelerometer data,
the application running in the foreground can provide useful
context for robust authentication. Intuitively, the way a user
handles and swipes in a phone for a banking application
is very different from those for a gaming application. The
foreground application context can be even more useful for
active authentication if some more insightful information about
the applications are available as meta data. For example,
one key idea of active/continuous authentication is gradually
blocking a probable intruder starting from the most sensitive
applications, such as banking and social media accounts [26],
[36]. If the sensitivity level or the type of application is known
as meta data, it would be possible to attain enhanced security.
Also, some applications, if permitted, can access the location
data and store click information for targeted advertisement
and similar applications [23]. A more active use case of
application-usage data could be verifying the users solely from
the pattern of usage. The different use cases of app-usage data
are shown in Fig. 1.

In this paper, the suitability of application-usage data as
a modality for smartphone user verification is thoroughly
investigated. The main contributions of this paper are:

• An innovative formulation that utilizes application usage
data patterns as a biometric for user verification. The
formulation tackles key challenges such as data sparsity
and accounting for unforeseen test observations. Unlike
traditional approaches of using top N-applications for
authentication purposes [12], in the proposed formulation
the full list of applications are considered for verification
models in order to ensure low-latency which is essential
for active authentication systems.



Fig. 1. Use cases for smartphone app-usage data.

• Insight into the application usage similarity among dif-
ferent users and statistics on unforeseen applications.

• A thorough investigation of the impact of unforeseen
events, i.e., unknown applications and unforeseen obser-
vations, on the verification task. Applications that appear
in the test set but were absent in the training set are
considered ‘unknown’ to the model for a user. On the
other hand, application names combined with certain
temporal information are considered as observations in
our formulation and observations that were never seen in
the training set are considered ‘unforeseen’ to the model.

• A Modified Edit-Distance (M-ED) algorithm and ex-
periments to demonstrate the advantage of including
unforeseen events during sequence matching.

• Modeling the Person Authentication using Trace Histories
(PATH) problem as a variation of the person authentica-
tion using location histories [25].

The paper is organized as follows. In Section II, background
and related works on this topic are discussed. In Section III,
the approach is explained in detail along with the associated
challenges and possible solutions. The impact of unknown
application and unforeseen events is investigated in Section
IV, and several methods for handling the active authentication
problem are described in Section V. Finally, a detailed analysis
on the application usage data, experimental results and discus-
sions are presented in Section VI, followed by conclusions and
suggestions for future work in Section VII.

II. RELATED WORK

In this section, some of the most recent published literature
on active authentication and the utilization of application usage
data are reviewed. The section also discusses the exploitation
of two active authentication datasets (UMDAA-02 [26] and
Securacy [10]) for this research work.

A. Active/Continuous Authentication of Smartphones
Active, continuous or implicit authentication are different

terminologies for the same authentication approach in which

the rightful user of mobile devices is authenticated throughout
the entire session of usage [14], [26], [34]. In recent years,
active authentication research has gained a lot of attention
because of the increased security risks and complexity of
password, token-based, multi-factor and other explicit authen-
tication systems [34]. In active authentication, the wide range
of sensor data available on the mobile devices are utilized to
learn one or more templates for the legitimate user during a
training session. The templates are used in the background
to continuously authenticate the user during regular usage and
based on the amount of deviation from the templates the device
itself starts restricting access to phone applications and utilities
starting from the most sensitive ones [26]. Most popular
modalities for active authentication are front camera face
images [6], [15], [38], touch screen gesture data [7], [11], [49],
accelerometer and gyroscope data [13], [32], [35], location
data [25] etc. Suitability of different behavioral biometric
signatures such as touch and keystroke dynamics, phone pick-
up patterns, gait dynamic, and patterns from location trace
history have been explored for active authentication [21],
[25], [28]. Combinations of multiple biometric have been
demonstrated to produce robust authentication on real-life
data4.

B. Prior Research on Application-Usage Data

In recent years, there has been a lot of focus on predicting
individual and community-wise application usage patterns
[2]. For example, in [47], the authors investigate the ratio
of local and global applications in the top usage list, the
traffic pattern for different application categories, likelihood
of co-occurrence of two different applications and such other
patterns in usage. In this work, the authors identify traffic
from distinct applications using HTTP signatures. On the other
hand, in [43] the authors use mobile in-app advertisements to
identify the applications in network traces. Using the ad flow
data, the authors analyze the usage behavior of different types
of applications. In [48], the authors analyze the application-
usage logs of over 4, 000 smartphone users worldwide to
develop an app-usage prediction model that leverages user
preferences, historical usage patterns, activities and shared
aggregate patterns of application behavior.

From the authentication front, in [19], the authors propose
an application centric decision approach for active or implicit
authentication in which applications are used as context to
decide what modalities to use to authenticate a user and
when to do it. Application usage data has also been used to
generate scores for user authentication in [12]. The authors
only consider the frequency of occurrence of an application in
the training set to determine the likelihood of being a particular
user, missing the temporal variation in the usage pattern.

An interesting use-case of application-usage data is pre-
sented in [39]. The authors use a large-scale annotated
application-usage dataset to build a predictor that can estimate

4http://www.biometricupdate.com/201506/atap-division-head-previews-
behavioral-biometrics-system-at-google-io



where a person is (e.g., at home or office) and if he/she is
with a close friend or a family member. In [22], the authors
use application usage traces along with system status and
sensor indicators to predict the battery life of the phones using
machine learning techniques.

In Table I, we present a handful of continuous authentication
systems and compare them based on some key features. It can
be seen from the table that, (a) most of the approaches model
the user verification problem as a much simpler one-vs-all
classification task, (b) most methods are evaluated on datasets
that are not realistic/wild, (c) only a couple of methods other
than ours have the capability of leveraging temporal dynamics
among consecutive actions, (d) equal error rate (EER) is
the most widely used evaluation metric across methods, and,
(e) other than our method, only one RNN-based method is
capable of handling unforeseen events, while the rest either
ignore them or model the problem in an unrealistic way not
accounting for unforeseen events.

C. Datasets on Application Usage
Even though there have been diverse research approaches

that need application-usage data, there is a scarcity of pub-
licly available datasets. Also, many of the application-usage
datasets have limited number of applications or are not un-
bounded real-life usage data, but instead contain data gener-
ated under supervision or by following certain instructions.
In this work, all the experiments are performed on two well-
known large scale public datasets suitable for investigating the
active authentication problem, namely, the application-usage
data of University of Maryland Active Authentication Dataset-
02 (UMDAA-02)5 [27] and the Securacy6 [10] dataset from
the Center of Ubiquitous Computing, University of Oulu.

1) UMDAA-02 Application-Usage Dataset: The UMDAA-
02 dataset is specifically designed for evaluating active au-
thentication systems in the wild. The dataset consists of
141.14 GB of smartphone sensor data collected from 45
volunteers who were using Nexus 5 phones in their regular
daily activities over a period of two months. The data col-
lection application ran completely in the background and the
collected data includes the front-facing camera, touchscreen,
gyroscope, accelerometer, magnetometer, light sensor, GPS,
Bluetooth, WiFi, proximity sensor, temperature sensor and
pressure sensor among with the timing of screen unlock and
lock events, start and end timestamps of calls and currently
running foreground application, etc.

The application usage data from 45 users is summarized
in Table II. However, not all the users have adequate amount
of usage data. For all the experiments in this paper, a total
of 26 users are used who have more than 500 training
samples and more than 200 test samples for any sampling
rate between 1/5s�1 to 1/30s�1. The usage statistics for the
top 20 applications for the selected 26 subjects is presented in
Table III. The usage rate for the top 20 applications for each

5Available at https://umdaa02.github.io/
6Available at http://ubicomp.oulu.fi/securacy-understanding-mobile-

privacy-and-security-concerns/

user is shown in Fig. 2(a). From the table and the figure, it
is readily seen that the applications ranked 6th, 8th, 12th and
20th are in the top list because of excessive usage by very
few users, whereas, the remaining applications are genuinely
popular among the users.

2) Securacy Application Usage Dataset: The Securacy
dataset was originally created within the context of exploring
the privacy and security concerns of a smartphone user by
analyzing the locations of servers that different applications
use and whether secure network connections are used. For a
period of approximately six months, the data was collected
from 218 anonymous participants who installed the data col-
lection application from the Google Play store. The collected
data, 679.90 GB, includes the currently running foreground
application, installed, removed or updated applications, appli-
cation server connections and device location, etc.

Out of the 218 users of the original Securacy dataset, 99 are
used for this experiment based on the limits on training and
test observations as mentioned for the UMDAA-02 dataset.
The application usage data for the 99 subjects in the Securacy
dataset are summarized in Table IV and the corresponding
usage statistics for the top 20 applications are presented in
Table V. The usage rate for the top 20 applications for each
user are shown in Fig. 2(b). Note that the top applications
ranked 1st, 2nd and 4th in Table V are actually the same
application written in Spanish, English and Finnish, respec-
tively. Similarly, rank 12, ‘Horloge’ is ’Clock’ in French, and
therefore is the same application as rank 19. However, these
applications are shown separately here because, for the active
authentication problem, even the preferred language of the user
is a type of biometric metadata and can be used to discriminate
between users. Also, similar to UMDAA-02 dataset usage
statistics, there are several applications in the top 20 rank
that were actually used by only a few users very frequently
(ranked 1, 4, 9, 12, 16). For this dataset, this phenomenon
can be attributed to language difference as well because if
the language difference were nullified, then rank 1, 2, 4 will
collapse at rank 1 and rank 12 and 19 will collapse at 12 -
thereby removing three applications from the list (rank 1, 4 and
12) that has very few users. For the user verification research
presented here, the language variation is kept unaltered in
order to retain the naturalness of the dataset and the algorithms
are expected to learn to discriminate between users based on
the language as well as on usage pattern.

III. PROBLEM FORMULATION

The application usage data from smartphones coupled with
the timing information can be used to determine the exact day,
time and duration of using any application. It is assumed here
that there might be certain patterns in the usage of different
applications at different times of the day or during weekdays
and weekends. Hence, a state-space model can be intuitively
considered for modeling the pattern of application usage for
a particular user. Models for different users are assumed to
be different because of the differences in lifestyles of each
individual. Therefore, the state-space model of a user can



TABLE I
COMPARISON AMONG DIFFERENT CONTINUOUS AUTHENTICATION APPROACHES FOR DIFFERENT MODALITIES.

Related
work

Modalities
Used

Methods and Features Authentication
Type

Dataset Is the
Dataset un-
controlled?

Considered Temporal
Dynamics among ac-
tions?

Metric Considered Unfore-
seen Events?

Result

Gamboa
et al.
2004 [16]

Mouse Dy-
namics

Estimated probability distribution
function for each user interac-
tion. Performed multimodal non-
parametric estimation and uni-
modal parametric estimation. 63
Features related to descriptive and
higher level statistics of the mouse
coordinates.

Verification.
Individual
model for
each user
using positive
samples only.

50 Volunteer playing sev-
eral games for 10-15 min-
utes. \apporx10 hours of
interaction, corresponding
to ¿400 strokes/user

No No. Each strokes is
considered an inde-
pendent action. When
multiple strokes are
considered for evalua-
tion, they are not tem-
porally sorted.

Mean
EER

N/A. Feature vector
consists of real num-
bers.

Mean EER of
2% for 50 mouse
strokes.

Zheng et
al. 2011
[51]

Mouse Dy-
namics

Three fine grained metrics - di-
rection, angle of curvature and
curvature distance in addition to
speed and pause-and-click mea-
sures. Classification using SVM
(RBF kernel).

One-vs-rest
Classification

Dataset1: Total of
81,218 point-and-click
actions (average 5,801
actions/user, ⇡150 hours
of raw mouse data).
Dataset2: 1,074 users
interacting in an online
forum for an hour.

No No. Temporal relation
between sessions are
not considered.

FAR,
FRR,
EER

N/A. Feature vector
consists of real num-
bers.

Mean EER of
1.3% for 20
clicks.

Sae-Bae
et al.
2012 [37]

Touch
gesture on
multi-touch
devices

Gesture denoted as n consecutive
touch sequences (sequence of x, y
coordinates of the touches). Used
Dynamic Time Warping (DTW) to
compute the sum of Euclidean dis-
tance between touch sequences of
a test gesture and a template..

Verification 34 participant (24 male,
10 female) using an IPAD
application producing 22
gestures.

No No. Temporal
relation between
touch sequences not
considered in gesture.

.EER Not considered.
New gestures would
always produce high
Euclidean distance
irrespective of the
user.

10% EER on
single gesture and
5% EER on dou-
ble gesture.

Frank et
al. 2012
[11]

Touch ges-
ture on a
smartphone

30 statistical features including
mid stroke area, stroke direction,
velocity and duration, phone and
finger orientation etc. kNN and
SVM (RBF kernel) classifiers are
trained.

One-vs-rest
classification

Touchalytic Dataset: 41
users (64% M and 84%
right handed) using two
custom software for 25-50
mins/user.

No No. Temporal relation
between consecutive
strokes are not
explored/utilized.

FAR,
FRR,
EER

Not considered. 2% to 3% inter-
session Mean
EER and 0%-4%
inter-week mean
EER.

Luca et al.
2012 [4]

Touch-
screen
Patterns
drawn on
smart-
phones

Time series of touch screen data
(X and Y coordinates), pressure,
size, time). Dynamic Time Warp-
ing (DTW) to match sequences.

One-vs-rest
Classification
for one-time-
authentication.

48 user (22F, 26M) per-
forming 4 different types
of patterns to unlock a
smartphone a total of 160
times in two different days
Test set has 640 Unlocks
per user..

No Yes, when comparing
two sequences DTW
considers temporal re-
lation. However, tem-
poral relation between
two consecutive pat-
terns are ignored.

Unlock
accuracy

N/A. Not a continuous
authentication
problem.

37%-57% two-
day accuracy
across different
settings.

Monrose
et al.
2000 [30]

Keystroke
dynamics
data

Users are clustered into groups
based on similarity in typing
rhythm for different letter com-
binations comprising of (possi-
bly) disjoint feature sets in which
the features in each set are pair-
wise correlated. Scored based on
Euclidean distance, non-weighted
probability, weighted probability
and Bayesian Classifier.

Classification Data from 63 users col-
lected over 11 month.Data
consists of structured texts.
Users had control on when
to run the experiments.

No.
Experiment
was
supervised.
Only
initiation
was in the
wild.

No, there is no-
mechanism to
consider the temporal
relation between the
keystrokes.

Identification
accuracy

Not considered. Un-
foreseen events are ig-
nored in the formula-
tion.

85.63% accuracy
for non-weighted
probability
measure,
92.14% accuracy
for Bayesian
Classifier.

Fathy et
al. 2015
[6]

Face
images
obtained
from
the front
camera of a
smartphone

400D MEEN features obtained
from the region surrounding
the mouth, eyes and nose.
Best performing classifiers
are Fisherfaces (FF) [1],
Sparse Representation-based
Classification (SRC) [46] and
Mean-Sequence SRC (MSSRC)
[33].

50 class Classi-
fication

UMDAA-01 Dataset: A
dataset of 50 users (43M,
7F) using smartphones for
5 different tasks and 3 dif-
ferent illumination in por-
trait mode. A total of
750 front camera videos
and 600 txt files recording
screen touch data.

No, The data
collection
was done
using
specially
designed
apps for
certain tasks.

No, evaluation was
done based on
individual images
without considering
temporal aspects.
Also, the dataset only
contains images for a
single day per user. .

Classification
accuracy

Unforeseen pose and
occlusion might lead
to failure in face detec-
tion.In that case, the
classifier will ignore
the frame.

Accuracy range
between 54.7%
and 74.9% for FF,
24.2% and 73.9%
for SRC, and
22.1% and 72.2%
for MSSRC
(trained on any
two sessions and
tested on the
third).

Zhang et
al. 2015
[50]

Touch Dy-
namics data

27 Features similar to [11]. Used
Kernel Dictionary-based Touch-
Gesture Recognition (KDTGR)
method.

Classification UMDAA-01 Touch Dy-
namics Dataset

No No, randomly selects
swipes, ignoring tem-
poral or logical depen-
dencies.

EER, F1-
Score

Not Considered. Average EER of
2.62% 0.65 when
trained and tested
on all sessions.

Lourenco
et al.
2012 [24]

ECG signal
obtained
non-
intrusively
from hand
palms

Real-time denoising of the ECG
waveform followed by an on-
line R-peak detection and kNN or
SVM classifiers.

Authentication
with kNN is
in verification
setting. With
SVM it is
One-vs-rest
Classification.

Data collected from 32
subjects (25M, 7F, avg.
age 31.19.46 years) using
a non-intrusive hand-palm
ECV device within a 5
minutes period/user.

Data
collection
setting was
supervised.

Not considered. EER and
mean
identi-
fication
error
(Eid)

N/A EER of
2.75%0.29 when
average of 5
heartbeats are
considered for
NN method.

Fridman
et al 2017
[12]

Stylometry
(text
analysis),
app usage,
web
browsing,
device
location.

Trained binary classifiers for each
modality and performed global de-
cision fusion.

One-vs-rest
Classification

200 subjects using their
personal Android mobile
device for a period of at
least 30 days.

Uncontrolled Not considered. Used
an one-feature n-gram
classifier for text data,
prior based decision
rule for app and web
browsing data, SVM
trained on latitude and
longitude.

FRR,
FAR,
Mean
EER

Explicitly ignored. FAR and FRR of
30% and 18%,
respectively for
the app-usage
data. Overall
mean EER of 5%
after 1 minute of
user interaction
with the device,
and 1% after 30
minutes.

Nevarova
et al.
2016 [32]

Accelerometer
and
gyroscope
data from
smart-
phones

Conv-DCWRNN method: Tempo-
ral feature extraction by a modified
Clockwork recurrent network fol-
lowed by classification via a prob-
abilistic generative model.

Verification.
But, requires
lot of additional
user data
to train the
Universal
background
network.

Googles project abacus
dataset consisting of
unconstrained smartphone
usage data from 1500
users for an average of 3
months.

Uncontrolled Yes. MeanEER,
Half total
error rate
(HTER)
in %

Yes, the UBM
network should
learn more general
information.

8.82 % mean
EER per session,
15.84% mean
EER per device
and 18.17% mean
EER per user.

Ours Application
usage data

Converted application name and
timing information into observa-
tions that are suitable for state-
space models as well as string
matching techniques.

Verification.
Models per
user trained
only on
the positive
samples.

UMDAA-02 dataset and
Securacy Dataset

Uncontrolled Yes Mean
EER

Yes Mean EEE
⇡30%
(UMDAA-02)
and ⇡16%
(Securacy)
(50 historic
observations
sampled at
$1/30s-̂1$).



(a) (b)

Fig. 2. Similarity matrix depicting top 20 application-usage rate among users in the training set of the (a) UMDAA-02 dataset and, (b) Securacy dataset.
Image is best viewed digitally in high resolution.

TABLE II
GENERAL INFORMATION ON APPLICATION-USAGE DATA AVAILABLE IN

THE UMDAA-02 DATASET.

No. of Subjects with � 500 training samples and
� 200 test samples for sampling rate of 1/30s�1

(Train/Test)

32/26

Avg. No. of Sessions/User with App-Usage Data of
the 26 selected subjects (train/test)

⇠ 582/ ⇠ 197

Train/Test split for the experiment 70%/30%
Total Number of Unique Applications Used by the
26 selected subjects (train/test)

119/67

Average Number of Samples Per User for the 26
selected subjects (train/test)

⇠ 4307/ ⇠ 1399

TABLE III
APP-USAGE STATISTICS FOR THE TOP 20 APPS FOR THE 26 SELECTED

USERS OF THE UMDAA-02 DATASET.

Rank App Name No.
of
Users

Per User
Usage

Overall
Usage

1 com.google.android.
googlequicksearchbox

26 283.27 283.27

2 com.android.dialer 25 255.24 245.42
3 com.whatsapp 15 303.6 175.15
4 com.android.chrome 26 141.42 141.42
5 com.facebook.katana 11 308.18 130.38
6 com.nextwave.wcc2 1 2366 91
7 com.google.android.youtube 16 144.38 88.85
8 com.ea.game.pvzfree 2 872.5 67.12
9 com.google.android.gm 24 51.04 47.12
10 com.android.mms 22 52.09 44.08
11 com.google.android.talk 18 62.28 43.12
12 com.andrewshu.android.reddit 1 842 32.38
13 com.nextbus.mobile 19 41.89 30.62
14 com.google.android.apps.docs 24 33 30.46
15 com.android.settings 24 27.71 25.58
16 com.google.android.apps.maps 14 44 23.69
17 com.android.camera2 22 20.5 17.35
18 com.google.android.gallery3d 17 24.94 16.31
19 com.android.vending 21 20.1 16.23
20 com.viber.voip 5 74.6 14.35

TABLE IV
GENERAL INFORMATION ON APPLICATION-USAGE DATA AVAILABLE IN

THE SECURACY DATASET.

No. of Subjects with � 500 training samples and
� 200 test samples for sampling rate of 1/30s�1

(Train/Test)

201/99

Avg. No. of Sessions/User with App-Usage Data of
the 26 selected subjects (train/test)

⇠ 119/ ⇠ 96

Train/Test split for the experiment 70%/30%
Total Number of Unique Applications Used by the
26 selected subjects (train/test)

1340/554

Average Number of Samples Per User for the 26
selected subjects (train/test)

⇠ 2235/ ⇠ 1745

TABLE V
APP-USAGE STATISTICS FOR THE TOP 20 APPS FOR THE 99 SELECTED

USERS OF THE SECURACY DATASET.

Rank App Name No.
of
Users

Per User
Usage

Overall
Usage

1 Sistema Android 4 9972.25 402.92
2 Android System 80 480.44 388.23
3 com.android.keyguard 34 802.79 275.71
4 Android-jrjestelm 5 4820.8 243.47
5 System UI 80 242 195.56
6 Nova Launcher 19 794.79 152.54
7 Maps 38 363.08 139.36
8 Google Search 53 214.3 114.73
9 Launcher 12 650 78.79
10 Chrome 60 128.2 77.7
11 Facebook 49 154.53 76.48
12 Horloge 1 7328 74.02
13 YouTube 49 144.94 71.74
14 TouchWiz home 20 348.3 70.36
15 Securacy 84 75.39 63.97
16 Internet 16 371.25 60
17 WhatsApp 37 154.62 57.79
18 Google Play Store 72 71.83 52.24
19 Clock 44 113.89 50.62
20 Package installer 36 138.69 50.43



effectively be considered as a model for the pattern of life
of that user and can be used to differentiate the user from
others. There are however several challenges to this approach
towards solving the authentication problem using application
usage:

• Forming observation states from the application data and
corresponding timing information.

• Training a state-space model in a way that it can handle
unforeseen observations during testing.

• Generating verification scores from sequential observa-
tion data.

Each of these challenges and the proposed solutions are
discussed here.

A. Application Names to Observation States
Incorporating the temporal information with the application

name is a challenge because the user can use an application
at any time, and therefore the power set of all applications
and all probable time is intractable even if we sample at
a relatively high frequency. For example, if there are N

number of applications and if we sample every 5 minutes,
then there would be 480 unique time stamps in a day and 3360
timestamps in a week. This would mean a total of 3360⇥N

observation states for the applications in a week. However,
for a single application, most of these observation states will
either not occur or occur very infrequently in the training set.
Hence, training a reliable state-space models with this sparsely
occurring observation states will be difficult.

In this regard, the time-zone and weekday/weekend flag
idea are adopted from [25]. By dividing the day into three
distinct time zones (TZs), namely, TZ1 (12:01 am to 8:00
am), TZ2 (8:01 am to 4:00 pm) and TZ3 (4:01 pm to 12:00
pm), and denoting weekday/weekend with a flag W (t) 2
WD,WE8t, respectively, the total number of possible ob-
servation states is kept limited to 6N . The functions TZ(t)
and W (t) map any time t into one of the corresponding
timezone and weekday/weekend, respectively. The impact of
converting application tags into observations on verifying the
users of the UMDAA-02 app-usage data and the Securacy
datasets can be visualized from Figs. 3(a)-(b) and 3(c)-(d),
respectively. The similarity matrix in Figs. 3(a) depicts the
percentage of common applications between two users in
UMDAA-02 training dataset, whereas, the similarity matrix
in Fig. 3(b) depicts the percentage of common observations
between any two users on the same dataset. It is clear that
the similarity of observations between two different users is
less than the similarity of applications. The effect is less
visible on the Securacy dataset (Figs. 3(c)-(d)) because the
subjects came from a diverse population than the subjects of
the UMDAA-02 dataset. Hence, the similarity of applications
is less pronounced, yet, the differences between application
similarity and observation similarity are still present.

B. Taking Unknown Applications into Account
Now, in order to handle unknown applications that might

be present in the test set, an additional application name U

is considered. The U application adds 6 observation states
when combined with TZs and W. Note that in the training set
there is no probability of having any U application, and all the
observations with U are assigned a very small prior probability
(10e � 20) when state-space models are trained. Also, it is
ensured for state-space models that the emission probability
for the states with U application does not go to zero, in
order to prevent zero probability score during testing when
unknown applications are encountered. If the total number of
unique applications used by user X in the training set is Ax,
then any application ↵y of the test user Y in the test set
Āy will be denoted as U if ↵y /2 Ax. In [25], the authors
addressed similar issues for geo-location data by considering
even more additional states such as nearby unknowns. How-
ever, proximity is a vague concept for application data and
therefore only U is considered here. Note that, any observation
with an unknown application is unforeseen by default, but an
unforeseen observation with some other application name is
not unknown.

Note that, apart from U , unforeseen observations might be
present in the test set. For example, in the training set an
application ↵x might only occur in weekdays at timezones
TZ1 and TZ2 while the same application might be used in
the test set at time zone TZ3 on a weekday. In that case, the
test observation (↵x, TZ3,WD) would be unforeseen in the
training set. For state space models, this problem is handled
by generating all possible combinations of applications, time
zone and day flag and use them to construct the model. If
one such observation is not present in the training set, it is
assigned non-zero prior and emission probabilities to ensure
that they do not bring down the probability of a test sequence
to zero.

C. Handling Uncertainty

Now that unknown applications and unforeseen observation
states are addressed, we tackle the creation of observation
states via binning of time-stamped data. In most cases, the
data collection is done in sessions, where a session starts
with unlocking the phone and stops when the phone is locked
again. Even if this is not the case, there can be very long idle
times between consecutive usage of a phone, during which,
authentication is a redundant operation and no application is
running in the foreground [44]. Hence, there can be a big gap
between the start-time for an application and the stop time of
the previous application in the data log. This time gap might
be as short as several seconds or as long as several days even
for a user who owns a smartphone for regular use [3]. The
sparsity introduced by this time gap is handled in two ways.
At the beginning of each session (unlocking of the phone)
a dummy observation state  is introduced. The state-space
model is expected to learn that  is a time gap which might
or might not cause a change in the time zone. For example,
the last used application might be in TZ1 before the closing
of a session. Then the next session may occur in either TZ1

or TZ2 or TZ3 of the same day. If the next session is in the
next day or if the day changes within a running session, then



(a) (b)

(c) (d)

Fig. 3. Similarity matrix depicting (a) application name overlap, and (b) observations overlap for the training set of the UMDAA-02 dataset. Similarly, (c)
and (d) depict the application overlap and observations overlap for the training set of the Securacy dataset. Image is best viewed digitally in high resolution.

an additional flag � is introduced which denotes the transition
into next day. The time zone and weekday/weekend flags are
ignored for observations  and �.

So, taking the six probable observations for U and the  and
� observations into consideration, the total number of possible
observation states for user X would be 6N + 6U + +�.

D. System Overview
A diagram depicting an application-usage-based user ver-

ification system is shown in Fig. 4. Once the observation
sequence is extracted, a verification model can be trained
based on the patterns in the sequence. The verification model
can be a state space model, a string matching approach or
even a recurrent neural network, depending on data availability
and need. For state-space models, once training for a user is
done, the model can be used to generate scores for last n

test observation sequences created using the same protocol

that was used during the training phase. The score can be
thresholded to obtain the verification decision. For simpler
methods such as sequence matching, unknown applications
and unforeseen observations are difficult to handle. For the
authentication problem, the unknown and unforeseen play key
roles, described in the next section.

IV. THE ROLE OF UNKNOWN APPLICATION AND
UNFORESEEN OBSERVATIONS IN USER VERIFICATION

In this section, we investigate the impacts of unknown
applications and unforeseen observations on the verification
task. We first look into the prevalence of unknown applications
and try to get an intuitive idea about their trend. Then, we
take the formal approach of designing three simple separate
verification experiments to evaluate performances with and
without unforeseen events. The outcome of these experiments



Fig. 4. Overview of an application-usage-based user verification system for mobile devices.

will clearly show the extent of influence that unforeseen
observations might have on verification tasks.

A. Statistics of unknown applications in the test data

If an application is present in the test set but not encountered
in the training set, the application is denoted with U as the
unknown application in the proposed formulation. Intuitively,
the prevalence of U will be much higher if the test set comes
from a different user or from an intruder of the phone, while
for the legitimate user the test set will have fewer unknown
applications. This intuition is verified on the application usage
data from both UMDAA-02 and Securacy datasets, as can be
seen from the box plots in Fig. 5.

Note that the gap between the whisker plots for same
user and different users is larger for the Securacy dataset
in comparison to UMDAA-02 dataset. Securacy is a larger
dataset with more users, more data per user and more variation
in user demographies compared to UMDAA-02 in which the
subjects were from a narrow age range and were all affiliated
with the same institution. Hence, it shows that among the
general population, even the selection of applications varies
widely between users.

B. Impacts of unforeseen events on binary decision perfor-
mance

Two simple experiments with unknown applications U and
unforeseen observations are performed on the UMDAA-02 and
Securacy datasets to evaluate their role in user verification.
The observations for each user are chronologically sorted and
the earliest 70% observations are considered for training and
the rest for testing. Now, for any user i in the training set, a
sequence of training observations S

tr
i is obtained along with

the set of unique applications Ai. Now, each test sequence of
a user is compared with the training sequence and application

lists of the training subjects and different binary hard decision
rules are applied in two experiments. In the first experiment,
the binary decision rule is based on occurrence of an appli-
cation in the test set that is not present in the training set.
In the second experiment, the decision is taken based on the
occurrence of an unforeseen observation in the test set. In
both cases, if there is even a single occurrence of an unknown
application or an unforeseen observation, then the match score
is set to 0.0, otherwise it is set to 1.0. The matching algorithms
for the two experiments are shown in (1) and (2), respectively.
The data sampling rates for both these experiments were set
to 1/30 per second, which resulted in ⇠ 16863 training-test
sequence pairs for the UMDAA-02 application-usage dataset
and ⇠ 846331 training-test sequence pairs for the Securacy
dataset. The number of users with adequate training and test
data is 26 in UMDAA-02 and 99 in Securacy, leading to an
average of ⇠ 647 and ⇠ 8549 pairs per user, respectively.

Algorithm 1 Binary Decision Rule based on Unknown Ap-
plications

procedure BINUNK(Ai, Ste
j ) . List of unique applications

of user i (Ai), n-last Test Sequence Vector of user j (Ste
j )

for v
te 2 S

te
j do . Loop through all test observations

a
te  v

te[0] . Get the application name from the
test observation

if ate /2 Ai then
return 0.0 . Return score 0.0 if any unknown

application is encountered
end if

end for
return 1.0 . Return score 1.0 if no unknown

application in test sequence
end procedure



(a)

(b)

Fig. 5. Boxplots depicting the percentage of unknown application in test data for (a) UMDAA-02 dataset, and (b) Securacy dataset, for different sampling
rates. Note that the average percentage of unknown applications used by the the different user is much larger than that for same user on both datasets.

Algorithm 2 Binary Decision Rule based on Unforeseen
Observations

procedure BINUNFORE(Str
i , Ste

j ) . Sequence of
training observations for user i (Str

i ), n-last Test Sequence
Vector of user j (Ste

j )
for v

te 2 S
te
j do . Loop through all test observations

if vte /2 S
tr
i then

return 0.0 . Return score 0.0 if any unforeseen
observation is encountered

end if
end for
return 1.0 . Return score 1.0 if no unforeseen

observation in test sequence
end procedure

Results for several evaluation metrics namely, sensitivity,
specificity, F1-score and accuracy - all in percentage, obtained
through the two experiments on the two datasets are shown in
Fig. 6(a)-(d). The definition of these metrics are as follows:

Sensitivity =
TP

TP + FN
⇥ 100% (1)

Specificity =
TN

TN + FP
⇥ 100% (2)

Accuracy =
TP + TN

TP + FP + TN + FN
⇥ 100% (3)

F1� Score =
2TP

2TP + FP + FN
⇥ 100% (4)

where, TP , FP and FN are the numbers of true positive,
false positive and false negative detections, respectively. High
Sensitivity implies smaller number of false-negatives, while



Fig. 6. (a) Sensitivity, (b) Specificity, (c) F1-Score, and (d) Accuracy (in %) obtained by varying sequence length n for Securacy and UMDAA-02 application-
usage data for using the Binary Hard Decision rule based on unknown applications and unforeseen observations.

high Specificity implies less false-positives. Accuracy over
50% denotes that the true values outweighs the false predic-
tions. Finally, F1-Score implies better overall precision and
recall.

Fig. 6 gives the following interesting insights about the im-
pact of the unknown applications and unforeseen observations
on the performance metrics for the two datasets.

• With increasing sequence length n, the specificity is
increasing gradually for all the cases, while sensitivity is
decreasing. The decrease in sensitivity is probably due to
the fact that the probability of having an unknown appli-
cation in the sequence increases with increasing sequence
size, thereby increasing the number of false negatives.
On the other hand, with increasing n more sequences are
denoted as negatives, which in effect reduces the number
of false positives and therefore increases the specificity.

• The sensitivity drops drastically when unforeseen ob-
servations are used instead of unknown applications as
decision criteria. This is understandable, since the number
of false negatives increases rapidly when any sequence
with at least one unforeseen observation is marked as
data from a different user.

• The number of false positives decreases when unfore-
seen observations are considered for decision instead of
unknowns. This leads to a jump in specificity for a fixed
n. In general, the specificity is much higher for Securacy
dataset in comparison to UMDAA-02. This proves that
there are more unknown applications and unforeseen
applications in Securacy when comparing a user with
others. Securacy being a more diverse and larger dataset
has wider variation of information, which leads to this
phenomenon. Here, the training data for each user is

longer, meaning that they are much closer representation
of real life and therefore, an unknown application or
unforeseen observation is actually a different user’s data
in most cases.

• Higher sensitivity, however, does not mean that for real
life data a simple binary classifier based on unforeseen
observations is reasonably good. The F1-Score is very
low for both datasets, which means either precision
or recall or both of therm are very low. Since in the
active authentication using application usage, the number
of positive pairs is largely outweighed by the number
of negative pairs, it can be assumed that FP >>

FN and TN >> TP . Since Precision= TP
TP+FP and

Recall= TP
TP+FN , that means, Recall>Precision. With in-

creasing n, FN increases, while FP decreases, leading
to reduction in recall and increase in precision. However,
given the fact that the F1-Score does not improve much
with increasing n, it can be assumed that Recall reduces
steeply while Precision does not improve much.

• Irrespective of deciding with unknown or unforeseen, the
accuracy is always lower for the UMDAA-02 dataset
in comparison to Securacy dataset. Even though the
application-usage information in Securacy is much larger
than UMDAA-02, probably due to the high demograph-
ical similarity among the subjects of UMDAA-02, the
binary hard measure performs poorly in comparison to
Securacy. In practice, there could not be any assumption
made about the demographic similarity or dissimilarity of
an user and an intruder - hence, using neither unknown
applications nor unforeseen observations as a hard deci-
sion metric cannot be a practical solution to the active
authentication problem.



• The experiment once again proves that ‘accuracy’ is not
a good performance metric when the number of samples
between classes is severely biased. In this example, the
average percentage of positive pairs in the dataset is
⇠ 3.85% on UMDAA-02 dataset and ⇠ 1.01% in the
Securacy dataset. Being an open set problem, the task is
to deal with heavily biased data towards negative samples
and better performance measures in this regard would be
receiver operating characteristic (ROC) curves and equal
error rates (EER) instead of accuracy.

C. Impacts of ignoring unforeseen events
Now that the impact of unforeseen events on the authentica-

tion problem is established, a slightly more advanced sequence
matching approach based on Levenshtein Distance a.k.a Edit-
Distance (ED) is performed to study the impact of ignoring the
unknown observations and unforeseen events. When matching
sequence s1 to another sequence s2 of the same length, the
original ED calculates the number of deletions, insertions, or
substitutions required to transform s1 to s2. For the active
authentication problem, let’s assume that a test observation
sequence S

te of length n is to be matched with any training
observation sequence S

tr of length N , where, intuitively N >

n. Since each observation consists of an application name,
timezone and day flag, when a mismatch occurs, the distance
can be assumed to be different depending on the amount of
match. For example, if only the application name matches,
then the timezone and day flag needs to be substituted, leading
to two operations. Mathematically, the modified edit distance
between S

tr and S
te can be expressed recursively as

ED(i, j) = min

8
>>><

>>>:

ED(i� 1, j) + 1

ED(i, j � 1) + 1

ED(i� 1, j � 1) +

�(Str(i� 1), Ste(j � 1)),

(5)

where, ED(i, 0) = i for i = 0, 1, . . . , N , ED(0, j) = j for
j = 0, 1, . . . , n, and

�(a, b) =

8
>>><

>>>:

0 if a[A] = b[A], a[T ] = b[T ], a[W ] = b[W ])

1 if a[A] = b[A], (a[T ] = b[T ] or a[W ] = b[W ])

2 if a[A] = b[A], a[T ] 6= b[T ], a[W ] 6= b[W ])

3 otherwise.

(6)

Here, a and b denote observations which consists of appli-
cation name A, time zone T and day flag W . The penalty
term � is 3 when there is no match at all between a and b, 2
when only the app names matches, 1 when either time zone
or day flag matches in addition to matching app names and
0 when there is no mismatch among the A, T and W s of
a and b. Based on these equations, a modified algorithm for
edit distance (M-ED) is presented in (3) that calculates the
distance using an iterative dynamic programming approach to
directly calculate the final distance without formulating the
entire transition matrix.

Using this algorithm, three different tests are performed on
the UMDAA-02 dataset, the results for which are given in

TABLE VI
PERFORMANCE OF THE M-ED ALGORITHM IN TERMS OF EER (%) FOR
THREE TYPES OF TEST SEQUENCES - ALL OBSERVATIONS, ALL EXCEPT

THE ONES WITH UNKNOWN APPLICATIONS AND ALL WITHOUT
UNFORESEEN OBSERVATIONS. EXPERIMENT PERFORMED ON THE
UMDAA-02 DATASET WITH FIXED SAMPLING RATE AT 1/30s�1 .

n
%EER

All Obs. No Unknown Apps. No Unforeseen Obs.

20 43.20 49.22 48.96

30 39.03 44.72 46.70

40 36.97 43.64 45.01

50 35.53 42.19 44.16

60 34.31 42.47 43.29

Table VI. In the first test, all test observations are included,
while in the next two tests, the observations with unknown
applications, and the unforeseen observations are ignored. In
order to ignore the unforeseen observations, for any training
sequence, each test sequence is compared to find the un-
foreseen observations and removed from the test sequence.
For unknown applications, the corresponding observation is
removed. This operation reduced the number of samples per
user from 891 to 458 and 245, respectively, and the number of
unique application in the test data went from 61 to 60 and 45.
As can be seen from Table VI, the lowest EERs for any value
of n are obtained when all observations are considered. The
table indicates that ignoring both unknown applications and
unforeseen observations make the verification task difficult.
This is because, the distribution of unknowns presented in Sec-
tion IV-A showed that the existence of unknown applications
can be very useful to differentiate between users. So, even
though, a binary decision solely based on unknowns would
be misleading (according to our findings in Section IV-B),
an intelligent decision incorporating the unknown applications
and unforeseen events could be rewarding as can be seen in
Table VI. Also, for practical purposes, ignoring samples will
cause latency in decision making, which can greatly reduce
the recall of an active authentication system.

V. SUITABLE MODELING TECHNIQUES

In this section, some suitable modeling approaches for the
application usage-based active authentication problem are dis-
cussed. In light of the outcomes of the experiments presented
in the previous section, it can be asserted that the application-
usage-based verification models must be capable of taking into
account unknown applications and unforeseen observations.
A popular approach to model temporal data sequences is
to use state-space models such as Mobility Markov Chains
or Hidden Markov Models (HMM) which can model time
variation of the data. However, these methods are not capable
of handling unforeseen events by default. For example, any
unforeseen event will be given a zero emission probability
in these models, and therefore, the models will be somewhat
like the binary decision model that was discussed earlier.



Algorithm 3 Pseudo code for the modified edit-Distance algorithm.
procedure M-ED(Str, Ste). Training observation sequence of a user (Str) of length N , n-last Test observation Sequence
of any user (Ste), where N > n.

D  [1, 2, . . . , n]
for j = 0 to n� 1 do

d zeros[0 : N ]
d[0] [j + 1]
for i = 0 to (N � 1) do

if Ste[j] == S
tr[i] then

d[i+ 1] D[j] . Exact match, no operation needed.
else

A1, T1,W1  S
tr[i] . Extract application name, timezone and day flag from the observations.

A2, T2,W2  S
te[j] . Extract application name, timezone and day flag from the observations.

NOp  0
if A1 == A2 and (T1 == T2 or W1 == W2) then

NOp  1 . One substitution needed if only timezone or day does not match.
else if A1 == A2 then

NOp  2 . Two substitution needed if neither timezone nor day are matching.
else

NOp  3 . Three substitution operation for no match.
end if
d[i+ 1] NOp+min(D[j], D[j + 1], d[i])

end if
D[j] d[i+ 1]

end for
end for
return D[n� 1]

end procedure

However, simple modifications to these models can improve
the usability of these methods when unforeseen events are
present as discussed in [25] for geo-location data. In this paper,
the three state-space models namely, the Markov Chain (MC)-
based Verification, HMM with Laplacian Smoothing (HMM-
lap) and Marginally Smoothed HMM (MSHMM), described in
[25] are employed on the application-usage-based verification
task and the performances are compared.

For the MC method, the prior probability for unknown and
unforeseen events are set to a very small nonzero probability
of � = e

�20 (Laplace-smoothing) when training a model XT

for observation sequences of length T . For MC, the probability
of transitioning to an observation state oj depends only on the
probability of the last observation state oi, i.e.

⌧i,j = Prob(XT = oj |XT�1 = oi). (7)

If the prior probability of entering any state i is pi =
Prob{X0 = i} with respect to the set of observations for user-
z O

z
T , then the total probability of traversing any sequence of

n consecutive observations i0, . . . , in 2 O
z
T is calculated as

Prob(X0 = i0, . . . , Xn = in) = pi0⌧i0,i1 . . . ⌧in�1,in (8)

Similar to the MC method, in HMM-lap method Laplacian
Smoothing of the emission probabilities is considered with
HMM to incorporate unforeseen observations as discussed in

[25]. The number of hidden states is fixed to 20 for all the
experiments and the maximum number of iteration is set to
50.

The most suitable approach for handling unforeseen obser-
vations is the Marginally Smoothed Hidden Markov Model
(MSHMM) introduced in [25]. To adopt the approach for the
active authentication problem, the marginal probabilities of the
presence of an application in the training sequence of a user
for each time-zone and day flags are precomputed. Assuming
that the probability of user-x using application a

i
x at time-zone

TZ(t) at time t, P (aix, Tj) is independent of the probability
of user-x using the application at location W (t), P (aix,W (t))
at time t, the emission probability from state s to observation
ot, ês(ot) is

ês(ot) = P (O{ax,TZ(t),W (t)}
t = o

{ax,TZ(t),W (t)}
t |Xt = s)

(9)

if ot 2 O
{ap

x,TZ(t),W (t)}
t . Otherwise,

ês(ot) = P (O{ax,TZ(t)}
t = o

{ax,TZ(t)}|Xt = s)⇥
P (O

{ap
x,W (t)}

t = o
{ax,W (t)}
t |Xt = s), (10)

where P (o{ax,TZ(t)}
t = max(�, P (ax, TZ(t))) and,

P (o{ax,W (t)}
t = max(�, P (ax,W (t))). By definition,

the MSHMM approach is capable of differentiating between
unknown applications and unforeseen observations with



TABLE VII
PERFORMANCE OF THE MSHMM ALGORITHM IN TERMS OF EER (%)

FOR THREE TYPES OF TEST SEQUENCES - ALL OBSERVATIONS, ALL
EXCEPT THE ONES WITH UNKNOWN APPLICATIONS AND ALL WITHOUT

UNFORESEEN OBSERVATIONS. EXPERIMENT PERFORMED ON THE
UMDAA-02 DATASET WITH FIXED SAMPLING RATE AT 1/30s�1 .

n
%EER

All Obs. No Unknown Apps. No Unforeseen Obs.

20 35.53 45.38 46.09

30 36 45.13 40.47

40 33 44.03 44.09

50 31.82 44.23 49.35

60 30.3 45.95 38.33

known applications, as well as, the more frequent vs. less
frequent applications occurring at different time zones and
days.

VI. EXPERIMENTAL RESULTS

In this section, the experimental results for the different
verification methods are discussed in detail for performance
comparison.

First, the impact of ignoring unknown applications and un-
foreseen observations on the overall verification of MSHMM,
a state-space method, for various n is presented in Table
VII. As can be seen from the table, both ignoring unknown
apps and unforeseen observations results in much lower EER
in comparison to the cases when all test observations are
considered. There results resonate with our findings in Table
VI using the M-ED algorithm.

The performances of M-ED, MMC, HMM-lap and
MSHMM algorithms for the full test sequences of the
UMDAA-02 application usage dataset are shown in Table VIII,
where, the sampling rate has been varied from one sample
every 5 seconds to one sample every 30 seconds with intervals
of 5 seconds, while the number of previous observations n is
varied from 20 to 60 with intervals of 10. It can be seen from
the table that with smaller sampling rate and bigger n, the EER
drops for all the methods. The MSHMM outperforms every
other method in every case, which can be attributed to the
improved modeling capability of the method due to marginal
smoothing. For a practical verification system, the sampling
rate and value of n would determine the latency of decision
making. In many cases, a sample every 30 second might be
too late and therefore the system designer should choose these
parameters carefully.

As for n, intuitively with more historical data the perfor-
mance should improve all the time. In order to determine
the impact of n and also to get an idea about the latency
of MSHMM when intrusion occurs, a different experiment
was performed where a different user’s data is appended
with the legitimate user’s data to simulate intrusion. To be
more precise, for each user of the UMDAA-02 dataset, 200
consecutive observations from the test sequence starting from a

Fig. 7. Average change in MSHMM scores in response to intrusion on the
UMDAA-02 application-usage data.

random index are appended with 200 consecutive observations
from the test sequences of all the other users (start index
picked randomly) and the whole sequence is evaluated using
MSHMM for different n values. The average score values
across all users are plotted in Fig. 7 for different n values.
When the observations from a different user starts to enter
a batch (at 200-th batch), the average scores returned by
MSHMM for each batch drops vividly, as can be seen from
the figure. Also, the figure clearly shows the drop is larger for
large n values - proving the intuition that considering more
historical data is advantageous in this regard. As for latency,
if the score of �200 is considered as a threshold for decision
making, then for all n = 60, the intrusion will be detected
within ⇠ 5 batches, i.e. withing 2.5 minutes from the inception
of intrusion.

Finally, for the Securacy dataset, the performances of
MSHMM, HMM-lap, MMC and M-ED are presented in Table.
IX. Similar to the UMDAA-02 dataset results, MSHMM
outperforms the other methods by a good margin. Note that the
EER values are much lower for this dataset for the state-space
models, which is understandable since it has already been
demonstrated in Fig. 3(c) that the users are quite separable
in this dataset even if only application names are considered.
However, M-ED faces difficulty in exploiting the separability
of the observations since is not capable of modeling temporal
variations as effectively as state-space models.

Based on results of the experiments presented in this paper,
it can be asserted that application-usage data might be useful
as a soft biometric for bolstering the decision in a multi-
modal user authentication scenario. Given the fact that the
application-usage data is readily available and easy to track
without using much battery or computational power, real-time
score generation is possible. The experiments also depict that
the verification scores show rapid change for intrusion within
several minutes. Hence, the latency is not too high for a soft
biometric measure. However, even though state-space models



TABLE VIII
APPLICATION-USAGE-BASED VERIFICATION PERFORMANCE COMPARISON FOR UMDAA-02 DATASET ACROSS DIFFERENT METHODS BASED ON EER

(%) FOR VARYING SEQUENCE LENGTH (N) AND SAMPLING RATE. THE NUMBER OF HIDDEN STATES IS FIXED AT 20 AND MAXIMUM NUMBER OF
ITERATION IS 50 FOR HMM-BASED METHODS.

n Method
Sampling Rate

1/5 1/10 1/15 1/20 1/25 1/30

20

M-ED 42.96 42.92 44.12 43.64 43.09 43.2

MMC 40.86 40.53 40.27 39.48 40.39 36.78

HMM-lap 38.49 38.35 37.82 37.39 38.83 36.77

MSHMM 37.3 37.3 36.67 35.93 35.63 34.82

30

M-ED 42.7 41.71 40.18 38.17 37.58 39.03

MMC 40.29 39.18 38.21 40 39.04 36.82

HMM-lap 37.28 37.2 36.68 37.73 37.89 37.45

MSHMM 36.23 36.87 35.74 36.87 35.99 35.79

40

M-ED 41.7 38.64 38.41 38.13 37.45 36.97

MMC 39.29 40.57 38.13 39.62 41.97 35.89

HMM-lap 37.37 37.88 36.75 36.07 39.11 34.62

MSHMM 35.4 35.65 34.026 34.4 36.58 32.54

50

M-ED 40.69 37.98 36.19 35.55 35.58 35.53

MMC 40.34 37.92 38.67 36.96 39.57 33.56

HMM-lap 36.97 36.01 36.48 34.72 36.7 33.95

MSHMM 35.95 34.41 34.67 32.41 35.27 30

60

M-ED 38.69 35.93 35.32 35.72 34.97 34.31

MMC 38.33 37.5 37.5 38.01 35.91 34.35

HMM-lap 35.31 35.48 34.18 33.15 36.05 34.35

MSHMM 34.036 34.92 32.78 33.33 34.3 31.93

TABLE IX
APP-BASED VERIFICATION EER(%) COMPARISON FOR SECURACY

DATASET ACROSS DIFFERENT METHODS [25] FOR DIFFERENT n VALUES.
NUMBER OF HIDDEN STATES IS SET TO 20 AND SAMPLING RATE IS

1/30s�1 .

n MSHMM MMC HMM-lap M-ED

20 17.23 19.286 19.66 35.09

30 16.75 18.9967 19.59 32.88

40 16.38 18.7074 19.19 31.4

50 16.26 17.9475 19.22 30.53

60 16.16 17.6443 18.38 30.58

can be made to work well with some modifications, the equal
error rate for a diverse dataset is still around ⇠ 16%, which
needs further improvement. In this regard, bigger training
datasets and keeping longer usage history might be helpful. In
addition, if computational constraints can be loosened, then
more sophisticated high-performance methods such as deep
neural networks can be employed to minimize the EER.

VII. CONCLUSION

In this paper, the challenging problem of active authen-
tication using application usage data has been formulated

and systematically tackled to obtain viable solutions. Through
several experiments, the impact of unknown applications and
unforeseen observations on the authentication problem has
been investigated and it is shown that for this problem in-
clusion of the uncertain events are necessary to obtain better
performances. In this regard, a modified edit distance algo-
rithm has been introduced, the performance of which is com-
pared with three state-space models namely, Markov Chain,
HMM with Laplacian Smoothing and Marginally-Smoothed
HMM, in terms of EER. Experiments were performed on
the UMDAA-02 and the Securacy application-usage datasets.
The experiments revealed some very interesting insights about
the differences between the two datasets. Also, the paper
addressed different aspects of important practical considera-
tions such as intrusion detection, latency, observation history
and sampling rate. As for future work, the M-ED method
might be further improved by varying the distances for the
three different cases based on the marginal probabilities. Also,
recurrent neural network (RNN)-based models might be able
to learn more discriminative properties of application-usage
patterns. However, RNNs require huge amount of data for
training, which the two datasets presented here lack. Another
interesting research direction would be the joint training of
application sequence and some other sequential data such as



the location data to improve the authentication performance.
Finally, since application information are also suitable context
for other modalities, application data sequences can have dual
utilization (as a separate modality and also as context) in more
advanced active authentication schemes.
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